Description of fast matrix multiplication algorithm: ⟨5×5×30:558⟩

Algorithm type

32X4Y5Z5+48X2Y5Z5+32X2Y3Z3+48XY3Z3+4X4YZ+2X2Y3Z+88X2Y2Z2+2X2YZ3+2X3YZ+4X2Y2Z+4X2YZ2+10XY3Z+10XYZ3+26X2YZ+50XY2Z+50XYZ2+146XYZ32X4Y5Z548X2Y5Z532X2Y3Z348XY3Z34X4YZ2X2Y3Z88X2Y2Z22X2YZ32X3YZ4X2Y2Z4X2YZ210XY3Z10XYZ326X2YZ50XY2Z50XYZ2146XYZ32*X^4*Y^5*Z^5+48*X^2*Y^5*Z^5+32*X^2*Y^3*Z^3+48*X*Y^3*Z^3+4*X^4*Y*Z+2*X^2*Y^3*Z+88*X^2*Y^2*Z^2+2*X^2*Y*Z^3+2*X^3*Y*Z+4*X^2*Y^2*Z+4*X^2*Y*Z^2+10*X*Y^3*Z+10*X*Y*Z^3+26*X^2*Y*Z+50*X*Y^2*Z+50*X*Y*Z^2+146*X*Y*Z

Algorithm definition

The algorithm ⟨5×5×30:558⟩ is the (Kronecker) tensor product of ⟨5×5×15:279⟩ with ⟨1×1×2:2⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table