Description of fast matrix multiplication algorithm: ⟨4×9×26:655⟩

Algorithm type

23X4Y4Z4+4X4Y3Z3+12X2Y6Z2+4X2Y5Z2+2X2Y5Z+66X2Y4Z2+22XY6Z+4X2Y3Z2+6XY5Z+118X2Y2Z2+48XY4Z+4X2YZ2+28XY3Z+2X2YZ+174XY2Z+138XYZ23X4Y4Z44X4Y3Z312X2Y6Z24X2Y5Z22X2Y5Z66X2Y4Z222XY6Z4X2Y3Z26XY5Z118X2Y2Z248XY4Z4X2YZ228XY3Z2X2YZ174XY2Z138XYZ23*X^4*Y^4*Z^4+4*X^4*Y^3*Z^3+12*X^2*Y^6*Z^2+4*X^2*Y^5*Z^2+2*X^2*Y^5*Z+66*X^2*Y^4*Z^2+22*X*Y^6*Z+4*X^2*Y^3*Z^2+6*X*Y^5*Z+118*X^2*Y^2*Z^2+48*X*Y^4*Z+4*X^2*Y*Z^2+28*X*Y^3*Z+2*X^2*Y*Z+174*X*Y^2*Z+138*X*Y*Z

Algorithm definition

The algorithm ⟨4×9×26:655⟩ could be constructed using the following decomposition:

⟨4×9×26:655⟩ = ⟨4×9×11:280⟩ + ⟨4×9×15:375⟩.

This decomposition is defined by the following equality:

TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_4_9B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_1_15B_1_16B_1_17B_1_18B_1_19B_1_20B_1_21B_1_22B_1_23B_1_24B_1_25B_1_26B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_2_15B_2_16B_2_17B_2_18B_2_19B_2_20B_2_21B_2_22B_2_23B_2_24B_2_25B_2_26B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_3_15B_3_16B_3_17B_3_18B_3_19B_3_20B_3_21B_3_22B_3_23B_3_24B_3_25B_3_26B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_4_12B_4_13B_4_14B_4_15B_4_16B_4_17B_4_18B_4_19B_4_20B_4_21B_4_22B_4_23B_4_24B_4_25B_4_26B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_5_12B_5_13B_5_14B_5_15B_5_16B_5_17B_5_18B_5_19B_5_20B_5_21B_5_22B_5_23B_5_24B_5_25B_5_26B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_6_12B_6_13B_6_14B_6_15B_6_16B_6_17B_6_18B_6_19B_6_20B_6_21B_6_22B_6_23B_6_24B_6_25B_6_26B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_7_12B_7_13B_7_14B_7_15B_7_16B_7_17B_7_18B_7_19B_7_20B_7_21B_7_22B_7_23B_7_24B_7_25B_7_26B_8_1B_8_2B_8_3B_8_4B_8_5B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_8_12B_8_13B_8_14B_8_15B_8_16B_8_17B_8_18B_8_19B_8_20B_8_21B_8_22B_8_23B_8_24B_8_25B_8_26B_9_1B_9_2B_9_3B_9_4B_9_5B_9_6B_9_7B_9_8B_9_9B_9_10B_9_11B_9_12B_9_13B_9_14B_9_15B_9_16B_9_17B_9_18B_9_19B_9_20B_9_21B_9_22B_9_23B_9_24B_9_25B_9_26C_1_1C_1_2C_1_3C_1_4C_2_1C_2_2C_2_3C_2_4C_3_1C_3_2C_3_3C_3_4C_4_1C_4_2C_4_3C_4_4C_5_1C_5_2C_5_3C_5_4C_6_1C_6_2C_6_3C_6_4C_7_1C_7_2C_7_3C_7_4C_8_1C_8_2C_8_3C_8_4C_9_1C_9_2C_9_3C_9_4C_10_1C_10_2C_10_3C_10_4C_11_1C_11_2C_11_3C_11_4C_12_1C_12_2C_12_3C_12_4C_13_1C_13_2C_13_3C_13_4C_14_1C_14_2C_14_3C_14_4C_15_1C_15_2C_15_3C_15_4C_16_1C_16_2C_16_3C_16_4C_17_1C_17_2C_17_3C_17_4C_18_1C_18_2C_18_3C_18_4C_19_1C_19_2C_19_3C_19_4C_20_1C_20_2C_20_3C_20_4C_21_1C_21_2C_21_3C_21_4C_22_1C_22_2C_22_3C_22_4C_23_1C_23_2C_23_3C_23_4C_24_1C_24_2C_24_3C_24_4C_25_1C_25_2C_25_3C_25_4C_26_1C_26_2C_26_3C_26_4=TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_4_9B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_8_1B_8_2B_8_3B_8_4B_8_5B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_9_1B_9_2B_9_3B_9_4B_9_5B_9_6B_9_7B_9_8B_9_9B_9_10B_9_11C_1_1C_1_2C_1_3C_1_4C_2_1C_2_2C_2_3C_2_4C_3_1C_3_2C_3_3C_3_4C_4_1C_4_2C_4_3C_4_4C_5_1C_5_2C_5_3C_5_4C_6_1C_6_2C_6_3C_6_4C_7_1C_7_2C_7_3C_7_4C_8_1C_8_2C_8_3C_8_4C_9_1C_9_2C_9_3C_9_4C_10_1C_10_2C_10_3C_10_4C_11_1C_11_2C_11_3C_11_4+TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_4_9B_1_12B_1_13B_1_14B_1_15B_1_16B_1_17B_1_18B_1_19B_1_20B_1_21B_1_22B_1_23B_1_24B_1_25B_1_26B_2_12B_2_13B_2_14B_2_15B_2_16B_2_17B_2_18B_2_19B_2_20B_2_21B_2_22B_2_23B_2_24B_2_25B_2_26B_3_12B_3_13B_3_14B_3_15B_3_16B_3_17B_3_18B_3_19B_3_20B_3_21B_3_22B_3_23B_3_24B_3_25B_3_26B_4_12B_4_13B_4_14B_4_15B_4_16B_4_17B_4_18B_4_19B_4_20B_4_21B_4_22B_4_23B_4_24B_4_25B_4_26B_5_12B_5_13B_5_14B_5_15B_5_16B_5_17B_5_18B_5_19B_5_20B_5_21B_5_22B_5_23B_5_24B_5_25B_5_26B_6_12B_6_13B_6_14B_6_15B_6_16B_6_17B_6_18B_6_19B_6_20B_6_21B_6_22B_6_23B_6_24B_6_25B_6_26B_7_12B_7_13B_7_14B_7_15B_7_16B_7_17B_7_18B_7_19B_7_20B_7_21B_7_22B_7_23B_7_24B_7_25B_7_26B_8_12B_8_13B_8_14B_8_15B_8_16B_8_17B_8_18B_8_19B_8_20B_8_21B_8_22B_8_23B_8_24B_8_25B_8_26B_9_12B_9_13B_9_14B_9_15B_9_16B_9_17B_9_18B_9_19B_9_20B_9_21B_9_22B_9_23B_9_24B_9_25B_9_26C_12_1C_12_2C_12_3C_12_4C_13_1C_13_2C_13_3C_13_4C_14_1C_14_2C_14_3C_14_4C_15_1C_15_2C_15_3C_15_4C_16_1C_16_2C_16_3C_16_4C_17_1C_17_2C_17_3C_17_4C_18_1C_18_2C_18_3C_18_4C_19_1C_19_2C_19_3C_19_4C_20_1C_20_2C_20_3C_20_4C_21_1C_21_2C_21_3C_21_4C_22_1C_22_2C_22_3C_22_4C_23_1C_23_2C_23_3C_23_4C_24_1C_24_2C_24_3C_24_4C_25_1C_25_2C_25_3C_25_4C_26_1C_26_2C_26_3C_26_4

N.B.: for any matrices A, B and C such that the expression Tr(Mul(A,B,C)) is defined, one can construct several trilinear homogeneous polynomials P(A,B,C) such that P(A,B,C)=Tr(Mul(A,B,C)) (P(A,B,C) variables are A,B and C's coefficients). Each trilinear P expression encodes a matrix multiplication algorithm: the coefficient in C_i_j of P(A,B,C) is the (i,j)-th entry of the matrix product Mul(A,B)=Transpose(C).

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table