Description of fast matrix multiplication algorithm: ⟨4×7×28:570⟩

Algorithm type

2X3Y7Z4+8X4Y4Z4+2X3Y5Z4+8X4Y3Z4+6X2Y7Z2+2X3Y3Z4+2X2Y6Z2+2XY7Z2+8X2Y5Z2+2XY6Z2+8X2Y4Z2+8X2Y3Z2+134X2Y2Z2+24XY4Z+6X2YZ2+60XY3Z+48XY2Z+240XYZ2X3Y7Z48X4Y4Z42X3Y5Z48X4Y3Z46X2Y7Z22X3Y3Z42X2Y6Z22XY7Z28X2Y5Z22XY6Z28X2Y4Z28X2Y3Z2134X2Y2Z224XY4Z6X2YZ260XY3Z48XY2Z240XYZ2*X^3*Y^7*Z^4+8*X^4*Y^4*Z^4+2*X^3*Y^5*Z^4+8*X^4*Y^3*Z^4+6*X^2*Y^7*Z^2+2*X^3*Y^3*Z^4+2*X^2*Y^6*Z^2+2*X*Y^7*Z^2+8*X^2*Y^5*Z^2+2*X*Y^6*Z^2+8*X^2*Y^4*Z^2+8*X^2*Y^3*Z^2+134*X^2*Y^2*Z^2+24*X*Y^4*Z+6*X^2*Y*Z^2+60*X*Y^3*Z+48*X*Y^2*Z+240*X*Y*Z

Algorithm definition

The algorithm ⟨4×7×28:570⟩ is the (Kronecker) tensor product of ⟨4×7×14:285⟩ with ⟨1×1×2:2⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table