Description of fast matrix multiplication algorithm: ⟨4×7×11:229⟩

Algorithm type

X4Y7Z4+2X4Y6Z4+3X4Y4Z4+X4Y3Z4+4X2Y7Z2+X3Y4Z3+2X2Y6Z2+X3Y3Z3+3X2Y5Z2+5X2Y4Z2+7X2Y3Z2+46X2Y2Z2+5XY4Z+X2YZ2+21XY3Z+44XY2Z+82XYZX4Y7Z42X4Y6Z43X4Y4Z4X4Y3Z44X2Y7Z2X3Y4Z32X2Y6Z2X3Y3Z33X2Y5Z25X2Y4Z27X2Y3Z246X2Y2Z25XY4ZX2YZ221XY3Z44XY2Z82XYZX^4*Y^7*Z^4+2*X^4*Y^6*Z^4+3*X^4*Y^4*Z^4+X^4*Y^3*Z^4+4*X^2*Y^7*Z^2+X^3*Y^4*Z^3+2*X^2*Y^6*Z^2+X^3*Y^3*Z^3+3*X^2*Y^5*Z^2+5*X^2*Y^4*Z^2+7*X^2*Y^3*Z^2+46*X^2*Y^2*Z^2+5*X*Y^4*Z+X^2*Y*Z^2+21*X*Y^3*Z+44*X*Y^2*Z+82*X*Y*Z

Algorithm definition

The algorithm ⟨4×7×11:229⟩ could be constructed using the following decomposition:

⟨4×7×11:229⟩ = ⟨2×4×6:39⟩ + ⟨2×4×5:33⟩ + ⟨2×3×6:30⟩ + ⟨2×4×6:39⟩ + ⟨2×3×6:30⟩ + ⟨2×4×5:33⟩ + ⟨2×3×5:25⟩.

This decomposition is defined by the following equality:

TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11C_1_1C_1_2C_1_3C_1_4C_2_1C_2_2C_2_3C_2_4C_3_1C_3_2C_3_3C_3_4C_4_1C_4_2C_4_3C_4_4C_5_1C_5_2C_5_3C_5_4C_6_1C_6_2C_6_3C_6_4C_7_1C_7_2C_7_3C_7_4C_8_1C_8_2C_8_3C_8_4C_9_1C_9_2C_9_3C_9_4C_10_1C_10_2C_10_3C_10_4C_11_1C_11_2C_11_3C_11_4=TraceMulA_4_2A_1_4+A_4_7A_1_5+A_4_6A_1_1+A_4_3A_3_2A_2_4+A_3_7A_2_5+A_3_6A_2_1+A_3_3B_2_6B_2_11B_2_1B_2_4B_2_10B_2_7B_7_6B_4_8+B_7_11B_4_2+B_7_1B_4_3+B_7_4B_4_9+B_7_10B_4_5+B_7_7B_6_6B_5_8+B_6_11B_5_2+B_6_1B_5_3+B_6_4B_5_9+B_6_10B_5_5+B_6_7B_3_6B_1_8+B_3_11B_1_2+B_3_1B_1_3+B_3_4B_1_9+B_3_10B_3_7+B_1_5C_6_4C_6_3C_8_1+C_11_4C_8_2+C_11_3C_2_1+C_1_4C_2_2+C_1_3C_3_1+C_4_4C_3_2+C_4_3C_9_1+C_10_4C_9_2+C_10_3C_5_1+C_7_4C_5_2+C_7_3+TraceMulA_1_2-A_4_2A_1_7-A_4_7A_1_6-A_4_6A_1_3-A_4_3A_2_2-A_3_2A_2_7-A_3_7A_2_6-A_3_6A_2_3-A_3_3B_2_8+B_2_11B_2_1+B_2_2B_2_3+B_2_4B_2_9+B_2_10B_2_7+B_2_5B_7_8+B_7_11B_7_1+B_7_2B_7_3+B_7_4B_7_9+B_7_10B_7_7+B_7_5B_6_8+B_6_11B_6_2+B_6_1B_6_3+B_6_4B_6_9+B_6_10B_6_7+B_6_5B_3_8+B_3_11B_3_1+B_3_2B_3_3+B_3_4B_3_9+B_3_10B_3_7+B_3_5C_8_1C_8_2C_2_1C_2_2C_3_1C_3_2C_9_1C_9_2C_5_1C_5_2+TraceMulA_4_4-A_1_4-A_1_5+A_4_5-A_1_1+A_4_1-A_2_4+A_3_4-A_2_5+A_3_5-A_2_1+A_3_1B_4_6B_4_8+B_4_11B_4_1+B_4_2B_4_3+B_4_4B_4_9+B_4_10B_4_7+B_4_5B_5_6B_5_8+B_5_11B_5_1+B_5_2B_5_3+B_5_4B_5_9+B_5_10B_5_7+B_5_5B_1_6B_1_8+B_1_11B_1_1+B_1_2B_1_3+B_1_4B_1_9+B_1_10B_1_7+B_1_5C_6_4C_6_3C_11_4C_11_3C_1_4C_1_3C_4_4C_4_3C_10_4C_10_3C_7_4C_7_3+TraceMulA_1_2A_1_4+A_1_7A_1_5+A_1_6A_1_1+A_1_3A_2_2A_2_4+A_2_7A_2_5+A_2_6A_2_1+A_2_3B_2_6B_2_11B_2_1B_2_4B_2_10B_2_7B_7_6B_7_11B_7_1B_7_4B_7_10B_7_7B_6_6B_6_11B_6_1B_6_4B_6_10B_6_7B_3_6B_3_11B_3_1B_3_4B_3_10B_3_7C_6_1C_6_2-C_8_1+C_11_1-C_8_2+C_11_2-C_2_1+C_1_1-C_2_2+C_1_2-C_3_1+C_4_1-C_3_2+C_4_2-C_9_1+C_10_1-C_9_2+C_10_2C_7_1-C_5_1C_7_2-C_5_2+TraceMulA_1_4A_1_5A_1_1A_2_4A_2_5A_2_1B_4_6-B_7_6B_4_11-B_7_11B_4_1-B_7_1B_4_4-B_7_4B_4_10-B_7_10B_4_7-B_7_7B_5_6-B_6_6B_5_11-B_6_11B_5_1-B_6_1B_5_4-B_6_4B_5_10-B_6_10B_5_7-B_6_7-B_3_6+B_1_6B_1_11-B_3_11B_1_1-B_3_1B_1_4-B_3_4B_1_10-B_3_10B_1_7-B_3_7C_6_1+C_6_4C_6_2+C_6_3C_11_1+C_11_4C_11_2+C_11_3C_1_1+C_1_4C_1_3+C_1_2C_4_1+C_4_4C_4_3+C_4_2C_10_1+C_10_4C_10_2+C_10_3C_7_1+C_7_4C_7_2+C_7_3+TraceMulA_4_2A_4_7A_4_6A_4_3A_3_2A_3_7A_3_6A_3_3B_2_8B_2_2B_2_3B_2_9B_2_5-B_4_8+B_7_8-B_4_2+B_7_2-B_4_3+B_7_3-B_4_9+B_7_9-B_4_5+B_7_5-B_5_8+B_6_8-B_5_2+B_6_2-B_5_3+B_6_3-B_5_9+B_6_9-B_5_5+B_6_5-B_1_8+B_3_8-B_1_2+B_3_2-B_1_3+B_3_3-B_1_9+B_3_9-B_1_5+B_3_5C_8_1+C_8_4C_8_2+C_8_3C_2_1+C_2_4C_2_3+C_2_2C_3_1+C_3_4C_3_3+C_3_2C_9_1+C_9_4C_9_2+C_9_3C_5_1+C_5_4C_5_2+C_5_3+TraceMulA_4_4+A_4_7A_4_6+A_4_5A_4_1+A_4_3A_3_4+A_3_7A_3_5+A_3_6A_3_1+A_3_3B_4_8B_4_2B_4_3B_4_9B_4_5B_5_8B_5_2B_5_3B_5_9B_5_5B_1_8B_1_2B_1_3B_1_9B_1_5C_8_4-C_11_4C_8_3-C_11_3C_2_4-C_1_4-C_1_3+C_2_3C_3_4-C_4_4C_3_3-C_4_3C_9_4-C_10_4C_9_3-C_10_3C_5_4-C_7_4C_5_3-C_7_3TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11C_1_1C_1_2C_1_3C_1_4C_2_1C_2_2C_2_3C_2_4C_3_1C_3_2C_3_3C_3_4C_4_1C_4_2C_4_3C_4_4C_5_1C_5_2C_5_3C_5_4C_6_1C_6_2C_6_3C_6_4C_7_1C_7_2C_7_3C_7_4C_8_1C_8_2C_8_3C_8_4C_9_1C_9_2C_9_3C_9_4C_10_1C_10_2C_10_3C_10_4C_11_1C_11_2C_11_3C_11_4TraceMulA_4_2A_1_4A_4_7A_1_5A_4_6A_1_1A_4_3A_3_2A_2_4A_3_7A_2_5A_3_6A_2_1A_3_3B_2_6B_2_11B_2_1B_2_4B_2_10B_2_7B_7_6B_4_8B_7_11B_4_2B_7_1B_4_3B_7_4B_4_9B_7_10B_4_5B_7_7B_6_6B_5_8B_6_11B_5_2B_6_1B_5_3B_6_4B_5_9B_6_10B_5_5B_6_7B_3_6B_1_8B_3_11B_1_2B_3_1B_1_3B_3_4B_1_9B_3_10B_3_7B_1_5C_6_4C_6_3C_8_1C_11_4C_8_2C_11_3C_2_1C_1_4C_2_2C_1_3C_3_1C_4_4C_3_2C_4_3C_9_1C_10_4C_9_2C_10_3C_5_1C_7_4C_5_2C_7_3TraceMulA_1_2A_4_2A_1_7A_4_7A_1_6A_4_6A_1_3A_4_3A_2_2A_3_2A_2_7A_3_7A_2_6A_3_6A_2_3A_3_3B_2_8B_2_11B_2_1B_2_2B_2_3B_2_4B_2_9B_2_10B_2_7B_2_5B_7_8B_7_11B_7_1B_7_2B_7_3B_7_4B_7_9B_7_10B_7_7B_7_5B_6_8B_6_11B_6_2B_6_1B_6_3B_6_4B_6_9B_6_10B_6_7B_6_5B_3_8B_3_11B_3_1B_3_2B_3_3B_3_4B_3_9B_3_10B_3_7B_3_5C_8_1C_8_2C_2_1C_2_2C_3_1C_3_2C_9_1C_9_2C_5_1C_5_2TraceMulA_4_4A_1_4A_1_5A_4_5A_1_1A_4_1A_2_4A_3_4A_2_5A_3_5A_2_1A_3_1B_4_6B_4_8B_4_11B_4_1B_4_2B_4_3B_4_4B_4_9B_4_10B_4_7B_4_5B_5_6B_5_8B_5_11B_5_1B_5_2B_5_3B_5_4B_5_9B_5_10B_5_7B_5_5B_1_6B_1_8B_1_11B_1_1B_1_2B_1_3B_1_4B_1_9B_1_10B_1_7B_1_5C_6_4C_6_3C_11_4C_11_3C_1_4C_1_3C_4_4C_4_3C_10_4C_10_3C_7_4C_7_3TraceMulA_1_2A_1_4A_1_7A_1_5A_1_6A_1_1A_1_3A_2_2A_2_4A_2_7A_2_5A_2_6A_2_1A_2_3B_2_6B_2_11B_2_1B_2_4B_2_10B_2_7B_7_6B_7_11B_7_1B_7_4B_7_10B_7_7B_6_6B_6_11B_6_1B_6_4B_6_10B_6_7B_3_6B_3_11B_3_1B_3_4B_3_10B_3_7C_6_1C_6_2C_8_1C_11_1C_8_2C_11_2C_2_1C_1_1C_2_2C_1_2C_3_1C_4_1C_3_2C_4_2C_9_1C_10_1C_9_2C_10_2C_7_1C_5_1C_7_2C_5_2TraceMulA_1_4A_1_5A_1_1A_2_4A_2_5A_2_1B_4_6B_7_6B_4_11B_7_11B_4_1B_7_1B_4_4B_7_4B_4_10B_7_10B_4_7B_7_7B_5_6B_6_6B_5_11B_6_11B_5_1B_6_1B_5_4B_6_4B_5_10B_6_10B_5_7B_6_7B_3_6B_1_6B_1_11B_3_11B_1_1B_3_1B_1_4B_3_4B_1_10B_3_10B_1_7B_3_7C_6_1C_6_4C_6_2C_6_3C_11_1C_11_4C_11_2C_11_3C_1_1C_1_4C_1_3C_1_2C_4_1C_4_4C_4_3C_4_2C_10_1C_10_4C_10_2C_10_3C_7_1C_7_4C_7_2C_7_3TraceMulA_4_2A_4_7A_4_6A_4_3A_3_2A_3_7A_3_6A_3_3B_2_8B_2_2B_2_3B_2_9B_2_5B_4_8B_7_8B_4_2B_7_2B_4_3B_7_3B_4_9B_7_9B_4_5B_7_5B_5_8B_6_8B_5_2B_6_2B_5_3B_6_3B_5_9B_6_9B_5_5B_6_5B_1_8B_3_8B_1_2B_3_2B_1_3B_3_3B_1_9B_3_9B_1_5B_3_5C_8_1C_8_4C_8_2C_8_3C_2_1C_2_4C_2_3C_2_2C_3_1C_3_4C_3_3C_3_2C_9_1C_9_4C_9_2C_9_3C_5_1C_5_4C_5_2C_5_3TraceMulA_4_4A_4_7A_4_6A_4_5A_4_1A_4_3A_3_4A_3_7A_3_5A_3_6A_3_1A_3_3B_4_8B_4_2B_4_3B_4_9B_4_5B_5_8B_5_2B_5_3B_5_9B_5_5B_1_8B_1_2B_1_3B_1_9B_1_5C_8_4C_11_4C_8_3C_11_3C_2_4C_1_4C_1_3C_2_3C_3_4C_4_4C_3_3C_4_3C_9_4C_10_4C_9_3C_10_3C_5_4C_7_4C_5_3C_7_3Trace(Mul(Matrix(4, 7, [[A_1_1,A_1_2,A_1_3,A_1_4,A_1_5,A_1_6,A_1_7],[A_2_1,A_2_2,A_2_3,A_2_4,A_2_5,A_2_6,A_2_7],[A_3_1,A_3_2,A_3_3,A_3_4,A_3_5,A_3_6,A_3_7],[A_4_1,A_4_2,A_4_3,A_4_4,A_4_5,A_4_6,A_4_7]]),Matrix(7, 11, [[B_1_1,B_1_2,B_1_3,B_1_4,B_1_5,B_1_6,B_1_7,B_1_8,B_1_9,B_1_10,B_1_11],[B_2_1,B_2_2,B_2_3,B_2_4,B_2_5,B_2_6,B_2_7,B_2_8,B_2_9,B_2_10,B_2_11],[B_3_1,B_3_2,B_3_3,B_3_4,B_3_5,B_3_6,B_3_7,B_3_8,B_3_9,B_3_10,B_3_11],[B_4_1,B_4_2,B_4_3,B_4_4,B_4_5,B_4_6,B_4_7,B_4_8,B_4_9,B_4_10,B_4_11],[B_5_1,B_5_2,B_5_3,B_5_4,B_5_5,B_5_6,B_5_7,B_5_8,B_5_9,B_5_10,B_5_11],[B_6_1,B_6_2,B_6_3,B_6_4,B_6_5,B_6_6,B_6_7,B_6_8,B_6_9,B_6_10,B_6_11],[B_7_1,B_7_2,B_7_3,B_7_4,B_7_5,B_7_6,B_7_7,B_7_8,B_7_9,B_7_10,B_7_11]]),Matrix(11, 4, [[C_1_1,C_1_2,C_1_3,C_1_4],[C_2_1,C_2_2,C_2_3,C_2_4],[C_3_1,C_3_2,C_3_3,C_3_4],[C_4_1,C_4_2,C_4_3,C_4_4],[C_5_1,C_5_2,C_5_3,C_5_4],[C_6_1,C_6_2,C_6_3,C_6_4],[C_7_1,C_7_2,C_7_3,C_7_4],[C_8_1,C_8_2,C_8_3,C_8_4],[C_9_1,C_9_2,C_9_3,C_9_4],[C_10_1,C_10_2,C_10_3,C_10_4],[C_11_1,C_11_2,C_11_3,C_11_4]]))) = Trace(Mul(Matrix(2, 4, [[A_4_2,A_1_4+A_4_7,A_1_5+A_4_6,A_1_1+A_4_3],[A_3_2,A_2_4+A_3_7,A_2_5+A_3_6,A_2_1+A_3_3]]),Matrix(4, 6, [[B_2_6,B_2_11,B_2_1,B_2_4,B_2_10,B_2_7],[B_7_6,B_4_8+B_7_11,B_4_2+B_7_1,B_4_3+B_7_4,B_4_9+B_7_10,B_4_5+B_7_7],[B_6_6,B_5_8+B_6_11,B_5_2+B_6_1,B_5_3+B_6_4,B_5_9+B_6_10,B_5_5+B_6_7],[B_3_6,B_1_8+B_3_11,B_1_2+B_3_1,B_1_3+B_3_4,B_1_9+B_3_10,B_3_7+B_1_5]]),Matrix(6, 2, [[C_6_4,C_6_3],[C_8_1+C_11_4,C_8_2+C_11_3],[C_2_1+C_1_4,C_2_2+C_1_3],[C_3_1+C_4_4,C_3_2+C_4_3],[C_9_1+C_10_4,C_9_2+C_10_3],[C_5_1+C_7_4,C_5_2+C_7_3]])))+Trace(Mul(Matrix(2, 4, [[A_1_2-A_4_2,A_1_7-A_4_7,A_1_6-A_4_6,A_1_3-A_4_3],[A_2_2-A_3_2,A_2_7-A_3_7,A_2_6-A_3_6,A_2_3-A_3_3]]),Matrix(4, 5, [[B_2_8+B_2_11,B_2_1+B_2_2,B_2_3+B_2_4,B_2_9+B_2_10,B_2_7+B_2_5],[B_7_8+B_7_11,B_7_1+B_7_2,B_7_3+B_7_4,B_7_9+B_7_10,B_7_7+B_7_5],[B_6_8+B_6_11,B_6_2+B_6_1,B_6_3+B_6_4,B_6_9+B_6_10,B_6_7+B_6_5],[B_3_8+B_3_11,B_3_1+B_3_2,B_3_3+B_3_4,B_3_9+B_3_10,B_3_7+B_3_5]]),Matrix(5, 2, [[C_8_1,C_8_2],[C_2_1,C_2_2],[C_3_1,C_3_2],[C_9_1,C_9_2],[C_5_1,C_5_2]])))+Trace(Mul(Matrix(2, 3, [[A_4_4-A_1_4,-A_1_5+A_4_5,-A_1_1+A_4_1],[-A_2_4+A_3_4,-A_2_5+A_3_5,-A_2_1+A_3_1]]),Matrix(3, 6, [[B_4_6,B_4_8+B_4_11,B_4_1+B_4_2,B_4_3+B_4_4,B_4_9+B_4_10,B_4_7+B_4_5],[B_5_6,B_5_8+B_5_11,B_5_1+B_5_2,B_5_3+B_5_4,B_5_9+B_5_10,B_5_7+B_5_5],[B_1_6,B_1_8+B_1_11,B_1_1+B_1_2,B_1_3+B_1_4,B_1_9+B_1_10,B_1_7+B_1_5]]),Matrix(6, 2, [[C_6_4,C_6_3],[C_11_4,C_11_3],[C_1_4,C_1_3],[C_4_4,C_4_3],[C_10_4,C_10_3],[C_7_4,C_7_3]])))+Trace(Mul(Matrix(2, 4, [[A_1_2,A_1_4+A_1_7,A_1_5+A_1_6,A_1_1+A_1_3],[A_2_2,A_2_4+A_2_7,A_2_5+A_2_6,A_2_1+A_2_3]]),Matrix(4, 6, [[B_2_6,B_2_11,B_2_1,B_2_4,B_2_10,B_2_7],[B_7_6,B_7_11,B_7_1,B_7_4,B_7_10,B_7_7],[B_6_6,B_6_11,B_6_1,B_6_4,B_6_10,B_6_7],[B_3_6,B_3_11,B_3_1,B_3_4,B_3_10,B_3_7]]),Matrix(6, 2, [[C_6_1,C_6_2],[-C_8_1+C_11_1,-C_8_2+C_11_2],[-C_2_1+C_1_1,-C_2_2+C_1_2],[-C_3_1+C_4_1,-C_3_2+C_4_2],[-C_9_1+C_10_1,-C_9_2+C_10_2],[C_7_1-C_5_1,C_7_2-C_5_2]])))+Trace(Mul(Matrix(2, 3, [[A_1_4,A_1_5,A_1_1],[A_2_4,A_2_5,A_2_1]]),Matrix(3, 6, [[B_4_6-B_7_6,B_4_11-B_7_11,B_4_1-B_7_1,B_4_4-B_7_4,B_4_10-B_7_10,B_4_7-B_7_7],[B_5_6-B_6_6,B_5_11-B_6_11,B_5_1-B_6_1,B_5_4-B_6_4,B_5_10-B_6_10,B_5_7-B_6_7],[-B_3_6+B_1_6,B_1_11-B_3_11,B_1_1-B_3_1,B_1_4-B_3_4,B_1_10-B_3_10,B_1_7-B_3_7]]),Matrix(6, 2, [[C_6_1+C_6_4,C_6_2+C_6_3],[C_11_1+C_11_4,C_11_2+C_11_3],[C_1_1+C_1_4,C_1_3+C_1_2],[C_4_1+C_4_4,C_4_3+C_4_2],[C_10_1+C_10_4,C_10_2+C_10_3],[C_7_1+C_7_4,C_7_2+C_7_3]])))+Trace(Mul(Matrix(2, 4, [[A_4_2,A_4_7,A_4_6,A_4_3],[A_3_2,A_3_7,A_3_6,A_3_3]]),Matrix(4, 5, [[B_2_8,B_2_2,B_2_3,B_2_9,B_2_5],[-B_4_8+B_7_8,-B_4_2+B_7_2,-B_4_3+B_7_3,-B_4_9+B_7_9,-B_4_5+B_7_5],[-B_5_8+B_6_8,-B_5_2+B_6_2,-B_5_3+B_6_3,-B_5_9+B_6_9,-B_5_5+B_6_5],[-B_1_8+B_3_8,-B_1_2+B_3_2,-B_1_3+B_3_3,-B_1_9+B_3_9,-B_1_5+B_3_5]]),Matrix(5, 2, [[C_8_1+C_8_4,C_8_2+C_8_3],[C_2_1+C_2_4,C_2_3+C_2_2],[C_3_1+C_3_4,C_3_3+C_3_2],[C_9_1+C_9_4,C_9_2+C_9_3],[C_5_1+C_5_4,C_5_2+C_5_3]])))+Trace(Mul(Matrix(2, 3, [[A_4_4+A_4_7,A_4_6+A_4_5,A_4_1+A_4_3],[A_3_4+A_3_7,A_3_5+A_3_6,A_3_1+A_3_3]]),Matrix(3, 5, [[B_4_8,B_4_2,B_4_3,B_4_9,B_4_5],[B_5_8,B_5_2,B_5_3,B_5_9,B_5_5],[B_1_8,B_1_2,B_1_3,B_1_9,B_1_5]]),Matrix(5, 2, [[C_8_4-C_11_4,C_8_3-C_11_3],[C_2_4-C_1_4,-C_1_3+C_2_3],[C_3_4-C_4_4,C_3_3-C_4_3],[C_9_4-C_10_4,C_9_3-C_10_3],[C_5_4-C_7_4,C_5_3-C_7_3]])))

N.B.: for any matrices A, B and C such that the expression Tr(Mul(A,B,C)) is defined, one can construct several trilinear homogeneous polynomials P(A,B,C) such that P(A,B,C)=Tr(Mul(A,B,C)) (P(A,B,C) variables are A,B and C's coefficients). Each trilinear P expression encodes a matrix multiplication algorithm: the coefficient in C_i_j of P(A,B,C) is the (i,j)-th entry of the matrix product Mul(A,B)=Transpose(C).

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table