Description of fast matrix multiplication algorithm: ⟨4×5×24:358⟩

Algorithm type

2X4Y2Z+2X3Y2Z2+12X2Y2Z3+2X3Y2Z+4X3YZ2+102X2Y2Z2+4XY2Z3+2X3YZ+8X2Y2Z+8X2YZ2+6XY3Z+16XYZ3+14X2YZ+46XY2Z+44XYZ2+86XYZ2X4Y2Z2X3Y2Z212X2Y2Z32X3Y2Z4X3YZ2102X2Y2Z24XY2Z32X3YZ8X2Y2Z8X2YZ26XY3Z16XYZ314X2YZ46XY2Z44XYZ286XYZ2*X^4*Y^2*Z+2*X^3*Y^2*Z^2+12*X^2*Y^2*Z^3+2*X^3*Y^2*Z+4*X^3*Y*Z^2+102*X^2*Y^2*Z^2+4*X*Y^2*Z^3+2*X^3*Y*Z+8*X^2*Y^2*Z+8*X^2*Y*Z^2+6*X*Y^3*Z+16*X*Y*Z^3+14*X^2*Y*Z+46*X*Y^2*Z+44*X*Y*Z^2+86*X*Y*Z

Algorithm definition

The algorithm ⟨4×5×24:358⟩ is the (Kronecker) tensor product of ⟨1×1×2:2⟩ with ⟨4×5×12:179⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table