Description of fast matrix multiplication algorithm: ⟨4×5×22:330⟩

Algorithm type

2X4Y2Z+2X3Y2Z2+12X2Y2Z3+2X3Y2Z+4X3YZ2+90X2Y2Z2+4XY2Z3+8X2Y2Z+8X2YZ2+4XY3Z+4XY2Z2+16XYZ3+16X2YZ+44XY2Z+52XYZ2+62XYZ2X4Y2Z2X3Y2Z212X2Y2Z32X3Y2Z4X3YZ290X2Y2Z24XY2Z38X2Y2Z8X2YZ24XY3Z4XY2Z216XYZ316X2YZ44XY2Z52XYZ262XYZ2*X^4*Y^2*Z+2*X^3*Y^2*Z^2+12*X^2*Y^2*Z^3+2*X^3*Y^2*Z+4*X^3*Y*Z^2+90*X^2*Y^2*Z^2+4*X*Y^2*Z^3+8*X^2*Y^2*Z+8*X^2*Y*Z^2+4*X*Y^3*Z+4*X*Y^2*Z^2+16*X*Y*Z^3+16*X^2*Y*Z+44*X*Y^2*Z+52*X*Y*Z^2+62*X*Y*Z

Algorithm definition

The algorithm ⟨4×5×22:330⟩ is the (Kronecker) tensor product of ⟨4×5×11:165⟩ with ⟨1×1×2:2⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table