Description of fast matrix multiplication algorithm: ⟨4×30×32:2400⟩

Algorithm type

16X4Y24Z4+32X4Y20Z4+64X2Y24Z2+48XY24Z+16X4Y16Z4+112X2Y20Z2+80XY20Z+8X4Y12Z4+56X2Y16Z2+40XY16Z+96X4Y8Z4+40X2Y12Z2+32XY12Z+152X2Y8Z2+32X2Y6Z2+16X2Y4Z4+56XY8Z+64X2Y5Z2+192X2Y4Z2+96XY6Z+16X2Y3Z2+160XY5Z+16XY4Z2+192X2Y2Z2+240XY4Z+64XY3Z+112XY2Z+32XYZ2+320XYZ16X4Y24Z432X4Y20Z464X2Y24Z248XY24Z16X4Y16Z4112X2Y20Z280XY20Z8X4Y12Z456X2Y16Z240XY16Z96X4Y8Z440X2Y12Z232XY12Z152X2Y8Z232X2Y6Z216X2Y4Z456XY8Z64X2Y5Z2192X2Y4Z296XY6Z16X2Y3Z2160XY5Z16XY4Z2192X2Y2Z2240XY4Z64XY3Z112XY2Z32XYZ2320XYZ16*X^4*Y^24*Z^4+32*X^4*Y^20*Z^4+64*X^2*Y^24*Z^2+48*X*Y^24*Z+16*X^4*Y^16*Z^4+112*X^2*Y^20*Z^2+80*X*Y^20*Z+8*X^4*Y^12*Z^4+56*X^2*Y^16*Z^2+40*X*Y^16*Z+96*X^4*Y^8*Z^4+40*X^2*Y^12*Z^2+32*X*Y^12*Z+152*X^2*Y^8*Z^2+32*X^2*Y^6*Z^2+16*X^2*Y^4*Z^4+56*X*Y^8*Z+64*X^2*Y^5*Z^2+192*X^2*Y^4*Z^2+96*X*Y^6*Z+16*X^2*Y^3*Z^2+160*X*Y^5*Z+16*X*Y^4*Z^2+192*X^2*Y^2*Z^2+240*X*Y^4*Z+64*X*Y^3*Z+112*X*Y^2*Z+32*X*Y*Z^2+320*X*Y*Z

Algorithm definition

The algorithm ⟨4×30×32:2400⟩ is the (Kronecker) tensor product of ⟨2×5×4:32⟩ with ⟨2×6×8:75⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table