Description of fast matrix multiplication algorithm: ⟨4×28×32:2288⟩

Algorithm type

4XY21Z+8XY18Z+12X2Y14Z2+4XY15Z+24X2Y12Z2+16XY14Z+48X4Y6Z4+12X2Y10Z2+36XY12Z+16X2Y9Z2+96X4Y4Z4+12X2Y8Z2+16XY10Z+20XY9Z+156X2Y6Z2+16XY8Z+20XY7Z+188X2Y4Z2+140XY6Z+80X2Y3Z2+20XY5Z+364X2Y2Z2+100XY4Z+168XY3Z+372XY2Z+340XYZ4XY21Z8XY18Z12X2Y14Z24XY15Z24X2Y12Z216XY14Z48X4Y6Z412X2Y10Z236XY12Z16X2Y9Z296X4Y4Z412X2Y8Z216XY10Z20XY9Z156X2Y6Z216XY8Z20XY7Z188X2Y4Z2140XY6Z80X2Y3Z220XY5Z364X2Y2Z2100XY4Z168XY3Z372XY2Z340XYZ4*X*Y^21*Z+8*X*Y^18*Z+12*X^2*Y^14*Z^2+4*X*Y^15*Z+24*X^2*Y^12*Z^2+16*X*Y^14*Z+48*X^4*Y^6*Z^4+12*X^2*Y^10*Z^2+36*X*Y^12*Z+16*X^2*Y^9*Z^2+96*X^4*Y^4*Z^4+12*X^2*Y^8*Z^2+16*X*Y^10*Z+20*X*Y^9*Z+156*X^2*Y^6*Z^2+16*X*Y^8*Z+20*X*Y^7*Z+188*X^2*Y^4*Z^2+140*X*Y^6*Z+80*X^2*Y^3*Z^2+20*X*Y^5*Z+364*X^2*Y^2*Z^2+100*X*Y^4*Z+168*X*Y^3*Z+372*X*Y^2*Z+340*X*Y*Z

Algorithm definition

The algorithm ⟨4×28×32:2288⟩ is the (Kronecker) tensor product of ⟨2×4×4:26⟩ with ⟨2×7×8:88⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table