Description of fast matrix multiplication algorithm: ⟨4×28×30:2112⟩

Algorithm type

24X2Y24Z2+24XY24Z+40X4Y16Z4+32X2Y20Z2+32XY20Z+112X2Y16Z2+72XY16Z+104X4Y8Z4+56X2Y12Z2+56XY12Z+16X4Y4Z4+152X2Y8Z2+48XY8Z+232X2Y4Z2+48XY6Z+64XY5Z+208X2Y2Z2+280XY4Z+32X2YZ2+112XY3Z+96XY2Z+272XYZ24X2Y24Z224XY24Z40X4Y16Z432X2Y20Z232XY20Z112X2Y16Z272XY16Z104X4Y8Z456X2Y12Z256XY12Z16X4Y4Z4152X2Y8Z248XY8Z232X2Y4Z248XY6Z64XY5Z208X2Y2Z2280XY4Z32X2YZ2112XY3Z96XY2Z272XYZ24*X^2*Y^24*Z^2+24*X*Y^24*Z+40*X^4*Y^16*Z^4+32*X^2*Y^20*Z^2+32*X*Y^20*Z+112*X^2*Y^16*Z^2+72*X*Y^16*Z+104*X^4*Y^8*Z^4+56*X^2*Y^12*Z^2+56*X*Y^12*Z+16*X^4*Y^4*Z^4+152*X^2*Y^8*Z^2+48*X*Y^8*Z+232*X^2*Y^4*Z^2+48*X*Y^6*Z+64*X*Y^5*Z+208*X^2*Y^2*Z^2+280*X*Y^4*Z+32*X^2*Y*Z^2+112*X*Y^3*Z+96*X*Y^2*Z+272*X*Y*Z

Algorithm definition

The algorithm ⟨4×28×30:2112⟩ is the (Kronecker) tensor product of ⟨2×4×5:32⟩ with ⟨2×7×6:66⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table