Description of fast matrix multiplication algorithm: ⟨4×28×28:1976⟩

Algorithm type

6XY21Z+4X2Y18Z2+12X4Y12Z4+2XY18Z+8X2Y15Z2+24X4Y10Z4+18X2Y14Z2+34XY15Z+24X4Y8Z4+30X2Y12Z2+24XY14Z+18X4Y6Z4+134X2Y10Z2+20XY12Z+6X2Y9Z2+54X4Y4Z4+68X2Y8Z2+136XY10Z+18XY9Z+6X4Y2Z4+116X2Y6Z2+48XY8Z+40X2Y5Z2+30XY7Z+142X2Y4Z2+92XY6Z+32X2Y3Z2+170XY5Z+170X2Y2Z2+100XY4Z+10X2YZ2+114XY3Z+146XY2Z+120XYZ6XY21Z4X2Y18Z212X4Y12Z42XY18Z8X2Y15Z224X4Y10Z418X2Y14Z234XY15Z24X4Y8Z430X2Y12Z224XY14Z18X4Y6Z4134X2Y10Z220XY12Z6X2Y9Z254X4Y4Z468X2Y8Z2136XY10Z18XY9Z6X4Y2Z4116X2Y6Z248XY8Z40X2Y5Z230XY7Z142X2Y4Z292XY6Z32X2Y3Z2170XY5Z170X2Y2Z2100XY4Z10X2YZ2114XY3Z146XY2Z120XYZ6*X*Y^21*Z+4*X^2*Y^18*Z^2+12*X^4*Y^12*Z^4+2*X*Y^18*Z+8*X^2*Y^15*Z^2+24*X^4*Y^10*Z^4+18*X^2*Y^14*Z^2+34*X*Y^15*Z+24*X^4*Y^8*Z^4+30*X^2*Y^12*Z^2+24*X*Y^14*Z+18*X^4*Y^6*Z^4+134*X^2*Y^10*Z^2+20*X*Y^12*Z+6*X^2*Y^9*Z^2+54*X^4*Y^4*Z^4+68*X^2*Y^8*Z^2+136*X*Y^10*Z+18*X*Y^9*Z+6*X^4*Y^2*Z^4+116*X^2*Y^6*Z^2+48*X*Y^8*Z+40*X^2*Y^5*Z^2+30*X*Y^7*Z+142*X^2*Y^4*Z^2+92*X*Y^6*Z+32*X^2*Y^3*Z^2+170*X*Y^5*Z+170*X^2*Y^2*Z^2+100*X*Y^4*Z+10*X^2*Y*Z^2+114*X*Y^3*Z+146*X*Y^2*Z+120*X*Y*Z

Algorithm definition

The algorithm ⟨4×28×28:1976⟩ is the (Kronecker) tensor product of ⟨2×4×4:26⟩ with ⟨2×7×7:76⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table