Description of fast matrix multiplication algorithm: ⟨4×27×30:2100⟩

Algorithm type

6X4Y12Z4+3X2Y16Z2+18X4Y10Z4+24X2Y14Z2+6XY16Z+15X4Y8Z4+30X2Y12Z2+48XY14Z+30X4Y6Z4+66X2Y10Z2+36XY12Z+51X4Y4Z4+48X2Y8Z2+60XY10Z+102X2Y6Z2+42XY8Z+36X2Y5Z2+48XY7Z+168X2Y4Z2+96XY6Z+60X2Y3Z2+60XY5Z+243X2Y2Z2+108XY4Z+60XY3Z+354XY2Z+282XYZ6X4Y12Z43X2Y16Z218X4Y10Z424X2Y14Z26XY16Z15X4Y8Z430X2Y12Z248XY14Z30X4Y6Z466X2Y10Z236XY12Z51X4Y4Z448X2Y8Z260XY10Z102X2Y6Z242XY8Z36X2Y5Z248XY7Z168X2Y4Z296XY6Z60X2Y3Z260XY5Z243X2Y2Z2108XY4Z60XY3Z354XY2Z282XYZ6*X^4*Y^12*Z^4+3*X^2*Y^16*Z^2+18*X^4*Y^10*Z^4+24*X^2*Y^14*Z^2+6*X*Y^16*Z+15*X^4*Y^8*Z^4+30*X^2*Y^12*Z^2+48*X*Y^14*Z+30*X^4*Y^6*Z^4+66*X^2*Y^10*Z^2+36*X*Y^12*Z+51*X^4*Y^4*Z^4+48*X^2*Y^8*Z^2+60*X*Y^10*Z+102*X^2*Y^6*Z^2+42*X*Y^8*Z+36*X^2*Y^5*Z^2+48*X*Y^7*Z+168*X^2*Y^4*Z^2+96*X*Y^6*Z+60*X^2*Y^3*Z^2+60*X*Y^5*Z+243*X^2*Y^2*Z^2+108*X*Y^4*Z+60*X*Y^3*Z+354*X*Y^2*Z+282*X*Y*Z

Algorithm definition

The algorithm ⟨4×27×30:2100⟩ is the (Kronecker) tensor product of ⟨2×3×3:15⟩ with ⟨2×9×10:140⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table