Description of fast matrix multiplication algorithm: ⟨4×25×32:2016⟩

Algorithm type

8X4Y20Z4+32X4Y16Z4+64X2Y20Z2+56XY20Z+8X4Y12Z4+80X2Y16Z2+48XY16Z+88X4Y8Z4+72X2Y12Z2+64XY12Z+152X2Y8Z2+64XY8Z+16X2Y5Z2+200X2Y4Z2+16X2Y3Z2+112XY5Z+176X2Y2Z2+232XY4Z+128XY3Z+128XY2Z+272XYZ8X4Y20Z432X4Y16Z464X2Y20Z256XY20Z8X4Y12Z480X2Y16Z248XY16Z88X4Y8Z472X2Y12Z264XY12Z152X2Y8Z264XY8Z16X2Y5Z2200X2Y4Z216X2Y3Z2112XY5Z176X2Y2Z2232XY4Z128XY3Z128XY2Z272XYZ8*X^4*Y^20*Z^4+32*X^4*Y^16*Z^4+64*X^2*Y^20*Z^2+56*X*Y^20*Z+8*X^4*Y^12*Z^4+80*X^2*Y^16*Z^2+48*X*Y^16*Z+88*X^4*Y^8*Z^4+72*X^2*Y^12*Z^2+64*X*Y^12*Z+152*X^2*Y^8*Z^2+64*X*Y^8*Z+16*X^2*Y^5*Z^2+200*X^2*Y^4*Z^2+16*X^2*Y^3*Z^2+112*X*Y^5*Z+176*X^2*Y^2*Z^2+232*X*Y^4*Z+128*X*Y^3*Z+128*X*Y^2*Z+272*X*Y*Z

Algorithm definition

The algorithm ⟨4×25×32:2016⟩ is the (Kronecker) tensor product of ⟨2×5×4:32⟩ with ⟨2×5×8:63⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table