Description of fast matrix multiplication algorithm: ⟨4×25×30:1920⟩

Algorithm type

4XY15Z+10X4Y8Z4+4X2Y12Z2+50X4Y6Z4+10X2Y10Z2+24XY12Z+20X2Y9Z2+60X4Y4Z4+70X2Y8Z2+10XY10Z+32XY9Z+154X2Y6Z2+60XY8Z+156X2Y4Z2+112XY6Z+80X2Y3Z2+16XY5Z+226X2Y2Z2+176XY4Z+180XY3Z+258XY2Z+208XYZ4XY15Z10X4Y8Z44X2Y12Z250X4Y6Z410X2Y10Z224XY12Z20X2Y9Z260X4Y4Z470X2Y8Z210XY10Z32XY9Z154X2Y6Z260XY8Z156X2Y4Z2112XY6Z80X2Y3Z216XY5Z226X2Y2Z2176XY4Z180XY3Z258XY2Z208XYZ4*X*Y^15*Z+10*X^4*Y^8*Z^4+4*X^2*Y^12*Z^2+50*X^4*Y^6*Z^4+10*X^2*Y^10*Z^2+24*X*Y^12*Z+20*X^2*Y^9*Z^2+60*X^4*Y^4*Z^4+70*X^2*Y^8*Z^2+10*X*Y^10*Z+32*X*Y^9*Z+154*X^2*Y^6*Z^2+60*X*Y^8*Z+156*X^2*Y^4*Z^2+112*X*Y^6*Z+80*X^2*Y^3*Z^2+16*X*Y^5*Z+226*X^2*Y^2*Z^2+176*X*Y^4*Z+180*X*Y^3*Z+258*X*Y^2*Z+208*X*Y*Z

Algorithm definition

The algorithm ⟨4×25×30:1920⟩ is the (Kronecker) tensor product of ⟨2×5×5:40⟩ with ⟨2×5×6:48⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table