Description of fast matrix multiplication algorithm: ⟨4×25×28:1760⟩

Algorithm type

16X4Y20Z4+16X4Y16Z4+64X2Y20Z2+48XY20Z+8X4Y12Z4+72X2Y16Z2+56XY16Z+80X4Y8Z4+40X2Y12Z2+32XY12Z+8X4Y4Z4+128X2Y8Z2+16X2Y4Z4+48XY8Z+32X2Y5Z2+152X2Y4Z2+16X2Y3Z2+96XY5Z+16XY4Z2+160X2Y2Z2+224XY4Z+16X2YZ2+64XY3Z+96XY2Z+32XYZ2+224XYZ16X4Y20Z416X4Y16Z464X2Y20Z248XY20Z8X4Y12Z472X2Y16Z256XY16Z80X4Y8Z440X2Y12Z232XY12Z8X4Y4Z4128X2Y8Z216X2Y4Z448XY8Z32X2Y5Z2152X2Y4Z216X2Y3Z296XY5Z16XY4Z2160X2Y2Z2224XY4Z16X2YZ264XY3Z96XY2Z32XYZ2224XYZ16*X^4*Y^20*Z^4+16*X^4*Y^16*Z^4+64*X^2*Y^20*Z^2+48*X*Y^20*Z+8*X^4*Y^12*Z^4+72*X^2*Y^16*Z^2+56*X*Y^16*Z+80*X^4*Y^8*Z^4+40*X^2*Y^12*Z^2+32*X*Y^12*Z+8*X^4*Y^4*Z^4+128*X^2*Y^8*Z^2+16*X^2*Y^4*Z^4+48*X*Y^8*Z+32*X^2*Y^5*Z^2+152*X^2*Y^4*Z^2+16*X^2*Y^3*Z^2+96*X*Y^5*Z+16*X*Y^4*Z^2+160*X^2*Y^2*Z^2+224*X*Y^4*Z+16*X^2*Y*Z^2+64*X*Y^3*Z+96*X*Y^2*Z+32*X*Y*Z^2+224*X*Y*Z

Algorithm definition

The algorithm ⟨4×25×28:1760⟩ is the (Kronecker) tensor product of ⟨2×5×4:32⟩ with ⟨2×5×7:55⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table