Description of fast matrix multiplication algorithm: ⟨4×24×32:1976⟩

Algorithm type

6XY18Z+2X2Y15Z2+6X4Y10Z4+6XY15Z+18X4Y8Z4+24X2Y12Z2+30X4Y6Z4+26X2Y10Z2+42XY12Z+10X2Y9Z2+66X4Y4Z4+78X2Y8Z2+24XY10Z+16XY9Z+110X2Y6Z2+72XY8Z+10X2Y5Z2+160X2Y4Z2+108XY6Z+50X2Y3Z2+30XY5Z+266X2Y2Z2+146XY4Z+132XY3Z+278XY2Z+260XYZ6XY18Z2X2Y15Z26X4Y10Z46XY15Z18X4Y8Z424X2Y12Z230X4Y6Z426X2Y10Z242XY12Z10X2Y9Z266X4Y4Z478X2Y8Z224XY10Z16XY9Z110X2Y6Z272XY8Z10X2Y5Z2160X2Y4Z2108XY6Z50X2Y3Z230XY5Z266X2Y2Z2146XY4Z132XY3Z278XY2Z260XYZ6*X*Y^18*Z+2*X^2*Y^15*Z^2+6*X^4*Y^10*Z^4+6*X*Y^15*Z+18*X^4*Y^8*Z^4+24*X^2*Y^12*Z^2+30*X^4*Y^6*Z^4+26*X^2*Y^10*Z^2+42*X*Y^12*Z+10*X^2*Y^9*Z^2+66*X^4*Y^4*Z^4+78*X^2*Y^8*Z^2+24*X*Y^10*Z+16*X*Y^9*Z+110*X^2*Y^6*Z^2+72*X*Y^8*Z+10*X^2*Y^5*Z^2+160*X^2*Y^4*Z^2+108*X*Y^6*Z+50*X^2*Y^3*Z^2+30*X*Y^5*Z+266*X^2*Y^2*Z^2+146*X*Y^4*Z+132*X*Y^3*Z+278*X*Y^2*Z+260*X*Y*Z

Algorithm definition

The algorithm ⟨4×24×32:1976⟩ is the (Kronecker) tensor product of ⟨2×4×4:26⟩ with ⟨2×6×8:76⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table