# Algorithm type

$6X{Y}^{18}Z+2{X}^{2}{Y}^{15}{Z}^{2}+6{X}^{4}{Y}^{10}{Z}^{4}+6X{Y}^{15}Z+18{X}^{4}{Y}^{8}{Z}^{4}+24{X}^{2}{Y}^{12}{Z}^{2}+30{X}^{4}{Y}^{6}{Z}^{4}+26{X}^{2}{Y}^{10}{Z}^{2}+42X{Y}^{12}Z+10{X}^{2}{Y}^{9}{Z}^{2}+66{X}^{4}{Y}^{4}{Z}^{4}+78{X}^{2}{Y}^{8}{Z}^{2}+24X{Y}^{10}Z+16X{Y}^{9}Z+110{X}^{2}{Y}^{6}{Z}^{2}+72X{Y}^{8}Z+10{X}^{2}{Y}^{5}{Z}^{2}+160{X}^{2}{Y}^{4}{Z}^{2}+108X{Y}^{6}Z+50{X}^{2}{Y}^{3}{Z}^{2}+30X{Y}^{5}Z+266{X}^{2}{Y}^{2}{Z}^{2}+146X{Y}^{4}Z+132X{Y}^{3}Z+278X{Y}^{2}Z+260XYZ$

# Algorithm definition

The algorithm ⟨4×24×32:1976⟩ is the (Kronecker) tensor product of ⟨2×4×4:26⟩ with ⟨2×6×8:76⟩.

# Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.

Back to main table