Description of fast matrix multiplication algorithm: ⟨4×24×28:1716⟩

Algorithm type

6XY18Z+8XY15Z+30X4Y8Z4+28X2Y12Z2+24X2Y10Z2+42XY12Z+78X4Y4Z4+94X2Y8Z2+32XY10Z+14XY9Z+12X4Y2Z4+68X2Y6Z2+72XY8Z+190X2Y4Z2+98XY6Z+4X2Y3Z2+40XY5Z+248X2Y2Z2+138XY4Z+20X2YZ2+104XY3Z+196XY2Z+170XYZ6XY18Z8XY15Z30X4Y8Z428X2Y12Z224X2Y10Z242XY12Z78X4Y4Z494X2Y8Z232XY10Z14XY9Z12X4Y2Z468X2Y6Z272XY8Z190X2Y4Z298XY6Z4X2Y3Z240XY5Z248X2Y2Z2138XY4Z20X2YZ2104XY3Z196XY2Z170XYZ6*X*Y^18*Z+8*X*Y^15*Z+30*X^4*Y^8*Z^4+28*X^2*Y^12*Z^2+24*X^2*Y^10*Z^2+42*X*Y^12*Z+78*X^4*Y^4*Z^4+94*X^2*Y^8*Z^2+32*X*Y^10*Z+14*X*Y^9*Z+12*X^4*Y^2*Z^4+68*X^2*Y^6*Z^2+72*X*Y^8*Z+190*X^2*Y^4*Z^2+98*X*Y^6*Z+4*X^2*Y^3*Z^2+40*X*Y^5*Z+248*X^2*Y^2*Z^2+138*X*Y^4*Z+20*X^2*Y*Z^2+104*X*Y^3*Z+196*X*Y^2*Z+170*X*Y*Z

Algorithm definition

The algorithm ⟨4×24×28:1716⟩ is the (Kronecker) tensor product of ⟨2×4×4:26⟩ with ⟨2×6×7:66⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table