Description of fast matrix multiplication algorithm: ⟨4×24×28:1739⟩

Algorithm type

2XY15Z+18X4Y6Z4+6X2Y10Z2+14XY12Z+6X2Y9Z2+85X4Y4Z4+42X2Y8Z2+8XY10Z+12XY9Z+88X2Y6Z2+56XY8Z+166X2Y4Z2+66XY6Z+30X2Y3Z2+10XY5Z+302X2Y2Z2+142XY4Z+110XY3Z+290XY2Z+286XYZ2XY15Z18X4Y6Z46X2Y10Z214XY12Z6X2Y9Z285X4Y4Z442X2Y8Z28XY10Z12XY9Z88X2Y6Z256XY8Z166X2Y4Z266XY6Z30X2Y3Z210XY5Z302X2Y2Z2142XY4Z110XY3Z290XY2Z286XYZ2*X*Y^15*Z+18*X^4*Y^6*Z^4+6*X^2*Y^10*Z^2+14*X*Y^12*Z+6*X^2*Y^9*Z^2+85*X^4*Y^4*Z^4+42*X^2*Y^8*Z^2+8*X*Y^10*Z+12*X*Y^9*Z+88*X^2*Y^6*Z^2+56*X*Y^8*Z+166*X^2*Y^4*Z^2+66*X*Y^6*Z+30*X^2*Y^3*Z^2+10*X*Y^5*Z+302*X^2*Y^2*Z^2+142*X*Y^4*Z+110*X*Y^3*Z+290*X*Y^2*Z+286*X*Y*Z

Algorithm definition

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table