Description of fast matrix multiplication algorithm: ⟨4×21×32:1760⟩

Algorithm type

8XY21Z+16XY18Z+8X2Y14Z2+8XY15Z+16X2Y12Z2+32X4Y6Z4+8X2Y10Z2+8XY12Z+32X2Y9Z2+64X4Y4Z4+8X2Y8Z2+40XY9Z+104X2Y6Z2+24XY7Z+40X2Y4Z2+88XY6Z+96X2Y3Z2+24XY5Z+328X2Y2Z2+24XY4Z+256XY3Z+120XY2Z+408XYZ8XY21Z16XY18Z8X2Y14Z28XY15Z16X2Y12Z232X4Y6Z48X2Y10Z28XY12Z32X2Y9Z264X4Y4Z48X2Y8Z240XY9Z104X2Y6Z224XY7Z40X2Y4Z288XY6Z96X2Y3Z224XY5Z328X2Y2Z224XY4Z256XY3Z120XY2Z408XYZ8*X*Y^21*Z+16*X*Y^18*Z+8*X^2*Y^14*Z^2+8*X*Y^15*Z+16*X^2*Y^12*Z^2+32*X^4*Y^6*Z^4+8*X^2*Y^10*Z^2+8*X*Y^12*Z+32*X^2*Y^9*Z^2+64*X^4*Y^4*Z^4+8*X^2*Y^8*Z^2+40*X*Y^9*Z+104*X^2*Y^6*Z^2+24*X*Y^7*Z+40*X^2*Y^4*Z^2+88*X*Y^6*Z+96*X^2*Y^3*Z^2+24*X*Y^5*Z+328*X^2*Y^2*Z^2+24*X*Y^4*Z+256*X*Y^3*Z+120*X*Y^2*Z+408*X*Y*Z

Algorithm definition

The algorithm ⟨4×21×32:1760⟩ is the (Kronecker) tensor product of ⟨2×3×4:20⟩ with ⟨2×7×8:88⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table