Description of fast matrix multiplication algorithm: ⟨4×21×30:1650⟩

Algorithm type

6X2Y14Z2+18X2Y12Z2+12XY14Z+30X4Y6Z4+6X2Y10Z2+36XY12Z+60X4Y4Z4+6X2Y8Z2+12XY10Z+102X2Y6Z2+12XY8Z+12XY7Z+156X2Y4Z2+120XY6Z+60X2Y3Z2+12XY5Z+246X2Y2Z2+84XY4Z+84XY3Z+324XY2Z+252XYZ6X2Y14Z218X2Y12Z212XY14Z30X4Y6Z46X2Y10Z236XY12Z60X4Y4Z46X2Y8Z212XY10Z102X2Y6Z212XY8Z12XY7Z156X2Y4Z2120XY6Z60X2Y3Z212XY5Z246X2Y2Z284XY4Z84XY3Z324XY2Z252XYZ6*X^2*Y^14*Z^2+18*X^2*Y^12*Z^2+12*X*Y^14*Z+30*X^4*Y^6*Z^4+6*X^2*Y^10*Z^2+36*X*Y^12*Z+60*X^4*Y^4*Z^4+6*X^2*Y^8*Z^2+12*X*Y^10*Z+102*X^2*Y^6*Z^2+12*X*Y^8*Z+12*X*Y^7*Z+156*X^2*Y^4*Z^2+120*X*Y^6*Z+60*X^2*Y^3*Z^2+12*X*Y^5*Z+246*X^2*Y^2*Z^2+84*X*Y^4*Z+84*X*Y^3*Z+324*X*Y^2*Z+252*X*Y*Z

Algorithm definition

The algorithm ⟨4×21×30:1650⟩ is the (Kronecker) tensor product of ⟨2×3×3:15⟩ with ⟨2×7×10:110⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table