Description of fast matrix multiplication algorithm: ⟨4×21×28:1520⟩

Algorithm type

12XY21Z+8X2Y18Z2+8X4Y12Z4+4XY18Z+16X2Y15Z2+16X4Y10Z4+12X2Y14Z2+68XY15Z+16X4Y8Z4+20X2Y12Z2+12X4Y6Z4+68X2Y10Z2+24XY12Z+12X2Y9Z2+36X4Y4Z4+24X2Y8Z2+36XY9Z+4X4Y2Z4+96X2Y6Z2+48X2Y5Z2+36XY7Z+68X2Y4Z2+32XY6Z+40X2Y3Z2+204XY5Z+156X2Y2Z2+72XY4Z+12X2YZ2+156XY3Z+60XY2Z+144XYZ12XY21Z8X2Y18Z28X4Y12Z44XY18Z16X2Y15Z216X4Y10Z412X2Y14Z268XY15Z16X4Y8Z420X2Y12Z212X4Y6Z468X2Y10Z224XY12Z12X2Y9Z236X4Y4Z424X2Y8Z236XY9Z4X4Y2Z496X2Y6Z248X2Y5Z236XY7Z68X2Y4Z232XY6Z40X2Y3Z2204XY5Z156X2Y2Z272XY4Z12X2YZ2156XY3Z60XY2Z144XYZ12*X*Y^21*Z+8*X^2*Y^18*Z^2+8*X^4*Y^12*Z^4+4*X*Y^18*Z+16*X^2*Y^15*Z^2+16*X^4*Y^10*Z^4+12*X^2*Y^14*Z^2+68*X*Y^15*Z+16*X^4*Y^8*Z^4+20*X^2*Y^12*Z^2+12*X^4*Y^6*Z^4+68*X^2*Y^10*Z^2+24*X*Y^12*Z+12*X^2*Y^9*Z^2+36*X^4*Y^4*Z^4+24*X^2*Y^8*Z^2+36*X*Y^9*Z+4*X^4*Y^2*Z^4+96*X^2*Y^6*Z^2+48*X^2*Y^5*Z^2+36*X*Y^7*Z+68*X^2*Y^4*Z^2+32*X*Y^6*Z+40*X^2*Y^3*Z^2+204*X*Y^5*Z+156*X^2*Y^2*Z^2+72*X*Y^4*Z+12*X^2*Y*Z^2+156*X*Y^3*Z+60*X*Y^2*Z+144*X*Y*Z

Algorithm definition

The algorithm ⟨4×21×28:1520⟩ is the (Kronecker) tensor product of ⟨2×3×4:20⟩ with ⟨2×7×7:76⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table