Description of fast matrix multiplication algorithm: ⟨4×20×32:1664⟩

Algorithm type

2XY15Z+6X4Y8Z4+2X2Y12Z2+48X4Y6Z4+6X2Y10Z2+20XY12Z+16X2Y9Z2+42X4Y4Z4+68X2Y8Z2+8XY10Z+22XY9Z+144X2Y6Z2+80XY8Z+120X2Y4Z2+106XY6Z+80X2Y3Z2+10XY5Z+172X2Y2Z2+172XY4Z+144XY3Z+226XY2Z+170XYZ2XY15Z6X4Y8Z42X2Y12Z248X4Y6Z46X2Y10Z220XY12Z16X2Y9Z242X4Y4Z468X2Y8Z28XY10Z22XY9Z144X2Y6Z280XY8Z120X2Y4Z2106XY6Z80X2Y3Z210XY5Z172X2Y2Z2172XY4Z144XY3Z226XY2Z170XYZ2*X*Y^15*Z+6*X^4*Y^8*Z^4+2*X^2*Y^12*Z^2+48*X^4*Y^6*Z^4+6*X^2*Y^10*Z^2+20*X*Y^12*Z+16*X^2*Y^9*Z^2+42*X^4*Y^4*Z^4+68*X^2*Y^8*Z^2+8*X*Y^10*Z+22*X*Y^9*Z+144*X^2*Y^6*Z^2+80*X*Y^8*Z+120*X^2*Y^4*Z^2+106*X*Y^6*Z+80*X^2*Y^3*Z^2+10*X*Y^5*Z+172*X^2*Y^2*Z^2+172*X*Y^4*Z+144*X*Y^3*Z+226*X*Y^2*Z+170*X*Y*Z

Algorithm definition

The algorithm ⟨4×20×32:1664⟩ is the (Kronecker) tensor product of ⟨2×4×4:26⟩ with ⟨2×5×8:64⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table