Description of fast matrix multiplication algorithm: ⟨4×20×30:1560⟩

Algorithm type

10X4Y8Z4+4X2Y12Z2+40X4Y6Z4+16XY12Z+16X2Y9Z2+40X4Y4Z4+50X2Y8Z2+32XY9Z+136X2Y6Z2+40XY8Z+116X2Y4Z2+104XY6Z+64X2Y3Z2+184X2Y2Z2+124XY4Z+176XY3Z+216XY2Z+192XYZ10X4Y8Z44X2Y12Z240X4Y6Z416XY12Z16X2Y9Z240X4Y4Z450X2Y8Z232XY9Z136X2Y6Z240XY8Z116X2Y4Z2104XY6Z64X2Y3Z2184X2Y2Z2124XY4Z176XY3Z216XY2Z192XYZ10*X^4*Y^8*Z^4+4*X^2*Y^12*Z^2+40*X^4*Y^6*Z^4+16*X*Y^12*Z+16*X^2*Y^9*Z^2+40*X^4*Y^4*Z^4+50*X^2*Y^8*Z^2+32*X*Y^9*Z+136*X^2*Y^6*Z^2+40*X*Y^8*Z+116*X^2*Y^4*Z^2+104*X*Y^6*Z+64*X^2*Y^3*Z^2+184*X^2*Y^2*Z^2+124*X*Y^4*Z+176*X*Y^3*Z+216*X*Y^2*Z+192*X*Y*Z

Algorithm definition

The algorithm ⟨4×20×30:1560⟩ is the (Kronecker) tensor product of ⟨2×4×6:39⟩ with ⟨2×5×5:40⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table