Description of fast matrix multiplication algorithm: ⟨4×20×28:1440⟩

Algorithm type

8X4Y16Z4+8X4Y12Z4+40X2Y16Z2+32XY16Z+72X4Y8Z4+56X2Y12Z2+48XY12Z+88X2Y8Z2+16XY8Z+192X2Y4Z2+16X2Y3Z2+144X2Y2Z2+240XY4Z+96XY3Z+32XY2Z+352XYZ8X4Y16Z48X4Y12Z440X2Y16Z232XY16Z72X4Y8Z456X2Y12Z248XY12Z88X2Y8Z216XY8Z192X2Y4Z216X2Y3Z2144X2Y2Z2240XY4Z96XY3Z32XY2Z352XYZ8*X^4*Y^16*Z^4+8*X^4*Y^12*Z^4+40*X^2*Y^16*Z^2+32*X*Y^16*Z+72*X^4*Y^8*Z^4+56*X^2*Y^12*Z^2+48*X*Y^12*Z+88*X^2*Y^8*Z^2+16*X*Y^8*Z+192*X^2*Y^4*Z^2+16*X^2*Y^3*Z^2+144*X^2*Y^2*Z^2+240*X*Y^4*Z+96*X*Y^3*Z+32*X*Y^2*Z+352*X*Y*Z

Algorithm definition

The algorithm ⟨4×20×28:1440⟩ is the (Kronecker) tensor product of ⟨2×4×7:45⟩ with ⟨2×5×4:32⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table