Description of fast matrix multiplication algorithm: ⟨4×20×28:1456⟩

Algorithm type

24X4Y6Z4+10XY12Z+8X2Y9Z2+60X4Y4Z4+30X2Y8Z2+22XY9Z+118X2Y6Z2+40XY8Z+122X2Y4Z2+102XY6Z+40X2Y3Z2+214X2Y2Z2+106XY4Z+148XY3Z+222XY2Z+190XYZ24X4Y6Z410XY12Z8X2Y9Z260X4Y4Z430X2Y8Z222XY9Z118X2Y6Z240XY8Z122X2Y4Z2102XY6Z40X2Y3Z2214X2Y2Z2106XY4Z148XY3Z222XY2Z190XYZ24*X^4*Y^6*Z^4+10*X*Y^12*Z+8*X^2*Y^9*Z^2+60*X^4*Y^4*Z^4+30*X^2*Y^8*Z^2+22*X*Y^9*Z+118*X^2*Y^6*Z^2+40*X*Y^8*Z+122*X^2*Y^4*Z^2+102*X*Y^6*Z+40*X^2*Y^3*Z^2+214*X^2*Y^2*Z^2+106*X*Y^4*Z+148*X*Y^3*Z+222*X*Y^2*Z+190*X*Y*Z

Algorithm definition

The algorithm ⟨4×20×28:1456⟩ is the (Kronecker) tensor product of ⟨2×4×4:26⟩ with ⟨2×5×7:56⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table