Description of fast matrix multiplication algorithm: ⟨4×20×24:1248⟩

Algorithm type

2XY15Z+6X4Y8Z4+2X2Y12Z2+30X4Y6Z4+6X2Y10Z2+12XY12Z+10X2Y9Z2+36X4Y4Z4+44X2Y8Z2+8XY10Z+16XY9Z+100X2Y6Z2+48XY8Z+106X2Y4Z2+80XY6Z+50X2Y3Z2+10XY5Z+138X2Y2Z2+124XY4Z+106XY3Z+184XY2Z+130XYZ2XY15Z6X4Y8Z42X2Y12Z230X4Y6Z46X2Y10Z212XY12Z10X2Y9Z236X4Y4Z444X2Y8Z28XY10Z16XY9Z100X2Y6Z248XY8Z106X2Y4Z280XY6Z50X2Y3Z210XY5Z138X2Y2Z2124XY4Z106XY3Z184XY2Z130XYZ2*X*Y^15*Z+6*X^4*Y^8*Z^4+2*X^2*Y^12*Z^2+30*X^4*Y^6*Z^4+6*X^2*Y^10*Z^2+12*X*Y^12*Z+10*X^2*Y^9*Z^2+36*X^4*Y^4*Z^4+44*X^2*Y^8*Z^2+8*X*Y^10*Z+16*X*Y^9*Z+100*X^2*Y^6*Z^2+48*X*Y^8*Z+106*X^2*Y^4*Z^2+80*X*Y^6*Z+50*X^2*Y^3*Z^2+10*X*Y^5*Z+138*X^2*Y^2*Z^2+124*X*Y^4*Z+106*X*Y^3*Z+184*X*Y^2*Z+130*X*Y*Z

Algorithm definition

The algorithm ⟨4×20×24:1248⟩ is the (Kronecker) tensor product of ⟨2×4×4:26⟩ with ⟨2×5×6:48⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table