Description of fast matrix multiplication algorithm: ⟨4×18×32:1520⟩

Algorithm type

12XY18Z+4X2Y15Z2+4X4Y10Z4+12XY15Z+12X4Y8Z4+24X2Y12Z2+20X4Y6Z4+12X2Y10Z2+36XY12Z+20X2Y9Z2+44X4Y4Z4+36X2Y8Z2+32XY9Z+76X2Y6Z2+12X2Y5Z2+64X2Y4Z2+64XY6Z+60X2Y3Z2+36XY5Z+236X2Y2Z2+108XY4Z+200XY3Z+84XY2Z+312XYZ12XY18Z4X2Y15Z24X4Y10Z412XY15Z12X4Y8Z424X2Y12Z220X4Y6Z412X2Y10Z236XY12Z20X2Y9Z244X4Y4Z436X2Y8Z232XY9Z76X2Y6Z212X2Y5Z264X2Y4Z264XY6Z60X2Y3Z236XY5Z236X2Y2Z2108XY4Z200XY3Z84XY2Z312XYZ12*X*Y^18*Z+4*X^2*Y^15*Z^2+4*X^4*Y^10*Z^4+12*X*Y^15*Z+12*X^4*Y^8*Z^4+24*X^2*Y^12*Z^2+20*X^4*Y^6*Z^4+12*X^2*Y^10*Z^2+36*X*Y^12*Z+20*X^2*Y^9*Z^2+44*X^4*Y^4*Z^4+36*X^2*Y^8*Z^2+32*X*Y^9*Z+76*X^2*Y^6*Z^2+12*X^2*Y^5*Z^2+64*X^2*Y^4*Z^2+64*X*Y^6*Z+60*X^2*Y^3*Z^2+36*X*Y^5*Z+236*X^2*Y^2*Z^2+108*X*Y^4*Z+200*X*Y^3*Z+84*X*Y^2*Z+312*X*Y*Z

Algorithm definition

The algorithm ⟨4×18×32:1520⟩ is the (Kronecker) tensor product of ⟨2×3×4:20⟩ with ⟨2×6×8:76⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table