Description of fast matrix multiplication algorithm: ⟨4×18×32:1500⟩

Algorithm type

8X2Y18Z2+8X4Y12Z4+24XY18Z+16X2Y15Z2+16X4Y10Z4+40XY15Z+8X4Y8Z4+32X2Y12Z2+4X4Y6Z4+40X2Y10Z2+20XY12Z+4X2Y9Z2+48X4Y4Z4+20X2Y8Z2+16XY9Z+88X2Y6Z2+48X2Y5Z2+52X2Y4Z2+8X2Y2Z4+100XY6Z+12X2Y3Z2+120XY5Z+224X2Y2Z2+60XY4Z+8XY3Z2+128XY3Z+84XY2Z+24XYZ2+240XYZ8X2Y18Z28X4Y12Z424XY18Z16X2Y15Z216X4Y10Z440XY15Z8X4Y8Z432X2Y12Z24X4Y6Z440X2Y10Z220XY12Z4X2Y9Z248X4Y4Z420X2Y8Z216XY9Z88X2Y6Z248X2Y5Z252X2Y4Z28X2Y2Z4100XY6Z12X2Y3Z2120XY5Z224X2Y2Z260XY4Z8XY3Z2128XY3Z84XY2Z24XYZ2240XYZ8*X^2*Y^18*Z^2+8*X^4*Y^12*Z^4+24*X*Y^18*Z+16*X^2*Y^15*Z^2+16*X^4*Y^10*Z^4+40*X*Y^15*Z+8*X^4*Y^8*Z^4+32*X^2*Y^12*Z^2+4*X^4*Y^6*Z^4+40*X^2*Y^10*Z^2+20*X*Y^12*Z+4*X^2*Y^9*Z^2+48*X^4*Y^4*Z^4+20*X^2*Y^8*Z^2+16*X*Y^9*Z+88*X^2*Y^6*Z^2+48*X^2*Y^5*Z^2+52*X^2*Y^4*Z^2+8*X^2*Y^2*Z^4+100*X*Y^6*Z+12*X^2*Y^3*Z^2+120*X*Y^5*Z+224*X^2*Y^2*Z^2+60*X*Y^4*Z+8*X*Y^3*Z^2+128*X*Y^3*Z+84*X*Y^2*Z+24*X*Y*Z^2+240*X*Y*Z

Algorithm definition

The algorithm ⟨4×18×32:1500⟩ is the (Kronecker) tensor product of ⟨2×3×4:20⟩ with ⟨2×6×8:75⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table