Description of fast matrix multiplication algorithm: ⟨4×18×28:1336⟩

Algorithm type

4XY15Z+12X4Y6Z4+4X2Y10Z2+28XY12Z+12X2Y9Z2+56X4Y4Z4+28X2Y8Z2+24XY9Z+80X2Y6Z2+8X2Y5Z2+4XY7Z+48X2Y4Z2+48XY6Z+28X2Y3Z2+16XY5Z+268X2Y2Z2+64XY4Z+188XY3Z+108XY2Z+308XYZ4XY15Z12X4Y6Z44X2Y10Z228XY12Z12X2Y9Z256X4Y4Z428X2Y8Z224XY9Z80X2Y6Z28X2Y5Z24XY7Z48X2Y4Z248XY6Z28X2Y3Z216XY5Z268X2Y2Z264XY4Z188XY3Z108XY2Z308XYZ4*X*Y^15*Z+12*X^4*Y^6*Z^4+4*X^2*Y^10*Z^2+28*X*Y^12*Z+12*X^2*Y^9*Z^2+56*X^4*Y^4*Z^4+28*X^2*Y^8*Z^2+24*X*Y^9*Z+80*X^2*Y^6*Z^2+8*X^2*Y^5*Z^2+4*X*Y^7*Z+48*X^2*Y^4*Z^2+48*X*Y^6*Z+28*X^2*Y^3*Z^2+16*X*Y^5*Z+268*X^2*Y^2*Z^2+64*X*Y^4*Z+188*X*Y^3*Z+108*X*Y^2*Z+308*X*Y*Z

Algorithm definition

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table