Description of fast matrix multiplication algorithm: ⟨4×18×28:1320⟩

Algorithm type

12XY18Z+16XY15Z+20X4Y8Z4+32X2Y12Z2+16X2Y10Z2+36XY12Z+52X4Y4Z4+36X2Y8Z2+28XY9Z+8X4Y2Z4+80X2Y6Z2+84X2Y4Z2+60XY6Z+8X2Y3Z2+48XY5Z+224X2Y2Z2+108XY4Z+24X2YZ2+152XY3Z+72XY2Z+204XYZ12XY18Z16XY15Z20X4Y8Z432X2Y12Z216X2Y10Z236XY12Z52X4Y4Z436X2Y8Z228XY9Z8X4Y2Z480X2Y6Z284X2Y4Z260XY6Z8X2Y3Z248XY5Z224X2Y2Z2108XY4Z24X2YZ2152XY3Z72XY2Z204XYZ12*X*Y^18*Z+16*X*Y^15*Z+20*X^4*Y^8*Z^4+32*X^2*Y^12*Z^2+16*X^2*Y^10*Z^2+36*X*Y^12*Z+52*X^4*Y^4*Z^4+36*X^2*Y^8*Z^2+28*X*Y^9*Z+8*X^4*Y^2*Z^4+80*X^2*Y^6*Z^2+84*X^2*Y^4*Z^2+60*X*Y^6*Z+8*X^2*Y^3*Z^2+48*X*Y^5*Z+224*X^2*Y^2*Z^2+108*X*Y^4*Z+24*X^2*Y*Z^2+152*X*Y^3*Z+72*X*Y^2*Z+204*X*Y*Z

Algorithm definition

The algorithm ⟨4×18×28:1320⟩ is the (Kronecker) tensor product of ⟨2×3×4:20⟩ with ⟨2×6×7:66⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table