Description of fast matrix multiplication algorithm: ⟨4×16×28:1170⟩

Algorithm type

6X4Y8Z4+2X2Y12Z2+6X4Y6Z4+8XY12Z+2X2Y9Z2+54X4Y4Z4+32X2Y8Z2+12XY9Z+62X2Y6Z2+32XY8Z+94X2Y4Z2+52XY6Z+10X2Y3Z2+222X2Y2Z2+56XY4Z+104XY3Z+196XY2Z+220XYZ6X4Y8Z42X2Y12Z26X4Y6Z48XY12Z2X2Y9Z254X4Y4Z432X2Y8Z212XY9Z62X2Y6Z232XY8Z94X2Y4Z252XY6Z10X2Y3Z2222X2Y2Z256XY4Z104XY3Z196XY2Z220XYZ6*X^4*Y^8*Z^4+2*X^2*Y^12*Z^2+6*X^4*Y^6*Z^4+8*X*Y^12*Z+2*X^2*Y^9*Z^2+54*X^4*Y^4*Z^4+32*X^2*Y^8*Z^2+12*X*Y^9*Z+62*X^2*Y^6*Z^2+32*X*Y^8*Z+94*X^2*Y^4*Z^2+52*X*Y^6*Z+10*X^2*Y^3*Z^2+222*X^2*Y^2*Z^2+56*X*Y^4*Z+104*X*Y^3*Z+196*X*Y^2*Z+220*X*Y*Z

Algorithm definition

The algorithm ⟨4×16×28:1170⟩ is the (Kronecker) tensor product of ⟨2×4×4:26⟩ with ⟨2×4×7:45⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table