Description of fast matrix multiplication algorithm: ⟨4×16×24:1014⟩

Algorithm type

6X4Y8Z4+2X2Y12Z2+24X4Y6Z4+8XY12Z+8X2Y9Z2+24X4Y4Z4+32X2Y8Z2+16XY9Z+88X2Y6Z2+32XY8Z+78X2Y4Z2+76XY6Z+40X2Y3Z2+112X2Y2Z2+88XY4Z+104XY3Z+156XY2Z+120XYZ6X4Y8Z42X2Y12Z224X4Y6Z48XY12Z8X2Y9Z224X4Y4Z432X2Y8Z216XY9Z88X2Y6Z232XY8Z78X2Y4Z276XY6Z40X2Y3Z2112X2Y2Z288XY4Z104XY3Z156XY2Z120XYZ6*X^4*Y^8*Z^4+2*X^2*Y^12*Z^2+24*X^4*Y^6*Z^4+8*X*Y^12*Z+8*X^2*Y^9*Z^2+24*X^4*Y^4*Z^4+32*X^2*Y^8*Z^2+16*X*Y^9*Z+88*X^2*Y^6*Z^2+32*X*Y^8*Z+78*X^2*Y^4*Z^2+76*X*Y^6*Z+40*X^2*Y^3*Z^2+112*X^2*Y^2*Z^2+88*X*Y^4*Z+104*X*Y^3*Z+156*X*Y^2*Z+120*X*Y*Z

Algorithm definition

The algorithm ⟨4×16×24:1014⟩ is the (Kronecker) tensor product of ⟨2×4×4:26⟩ with ⟨2×4×6:39⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table