Description of fast matrix multiplication algorithm: ⟨4×16×17:724⟩

Algorithm type

24X4Y8Z4+18X4Y4Z4+40X2Y8Z2+4XY9Z+18X2Y6Z2+16XY8Z+84X2Y4Z2+28XY6Z+108X2Y2Z2+72XY4Z+12X2YZ2+34XY3Z+140XY2Z+126XYZ24X4Y8Z418X4Y4Z440X2Y8Z24XY9Z18X2Y6Z216XY8Z84X2Y4Z228XY6Z108X2Y2Z272XY4Z12X2YZ234XY3Z140XY2Z126XYZ24*X^4*Y^8*Z^4+18*X^4*Y^4*Z^4+40*X^2*Y^8*Z^2+4*X*Y^9*Z+18*X^2*Y^6*Z^2+16*X*Y^8*Z+84*X^2*Y^4*Z^2+28*X*Y^6*Z+108*X^2*Y^2*Z^2+72*X*Y^4*Z+12*X^2*Y*Z^2+34*X*Y^3*Z+140*X*Y^2*Z+126*X*Y*Z

Algorithm definition

The algorithm ⟨4×16×17:724⟩ could be constructed using the following decomposition:

⟨4×16×17:724⟩ = ⟨2×4×4:26⟩ + ⟨2×4×4:26⟩ + ⟨2×4×4:26⟩ + ⟨2×4×4:26⟩ + ⟨2×4×5:32⟩ + ⟨2×4×4:26⟩ + ⟨2×4×4:26⟩ + ⟨2×4×4:26⟩ + ⟨2×4×4:26⟩ + ⟨2×4×4:26⟩ + ⟨2×4×4:26⟩ + ⟨2×4×4:26⟩ + ⟨2×4×4:26⟩ + ⟨2×4×5:32⟩ + ⟨2×4×4:26⟩ + ⟨2×4×5:32⟩ + ⟨2×4×5:32⟩ + ⟨2×4×4:26⟩ + ⟨2×4×4:26⟩ + ⟨2×4×5:32⟩ + ⟨2×4×4:26⟩ + ⟨2×4×5:32⟩ + ⟨2×4×5:32⟩ + ⟨2×4×4:26⟩ + ⟨2×4×4:26⟩ + ⟨2×4×5:32⟩.

This decomposition is defined by the following equality:

TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_1_10A_1_11A_1_12A_1_13A_1_14A_1_15A_1_16A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_2_10A_2_11A_2_12A_2_13A_2_14A_2_15A_2_16A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_3_10A_3_11A_3_12A_3_13A_3_14A_3_15A_3_16A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_4_9A_4_10A_4_11A_4_12A_4_13A_4_14A_4_15A_4_16B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_1_15B_1_16B_1_17B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_2_15B_2_16B_2_17B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_3_15B_3_16B_3_17B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_4_12B_4_13B_4_14B_4_15B_4_16B_4_17B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_5_12B_5_13B_5_14B_5_15B_5_16B_5_17B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_6_12B_6_13B_6_14B_6_15B_6_16B_6_17B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_7_12B_7_13B_7_14B_7_15B_7_16B_7_17B_8_1B_8_2B_8_3B_8_4B_8_5B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_8_12B_8_13B_8_14B_8_15B_8_16B_8_17B_9_1B_9_2B_9_3B_9_4B_9_5B_9_6B_9_7B_9_8B_9_9B_9_10B_9_11B_9_12B_9_13B_9_14B_9_15B_9_16B_9_17B_10_1B_10_2B_10_3B_10_4B_10_5B_10_6B_10_7B_10_8B_10_9B_10_10B_10_11B_10_12B_10_13B_10_14B_10_15B_10_16B_10_17B_11_1B_11_2B_11_3B_11_4B_11_5B_11_6B_11_7B_11_8B_11_9B_11_10B_11_11B_11_12B_11_13B_11_14B_11_15B_11_16B_11_17B_12_1B_12_2B_12_3B_12_4B_12_5B_12_6B_12_7B_12_8B_12_9B_12_10B_12_11B_12_12B_12_13B_12_14B_12_15B_12_16B_12_17B_13_1B_13_2B_13_3B_13_4B_13_5B_13_6B_13_7B_13_8B_13_9B_13_10B_13_11B_13_12B_13_13B_13_14B_13_15B_13_16B_13_17B_14_1B_14_2B_14_3B_14_4B_14_5B_14_6B_14_7B_14_8B_14_9B_14_10B_14_11B_14_12B_14_13B_14_14B_14_15B_14_16B_14_17B_15_1B_15_2B_15_3B_15_4B_15_5B_15_6B_15_7B_15_8B_15_9B_15_10B_15_11B_15_12B_15_13B_15_14B_15_15B_15_16B_15_17B_16_1B_16_2B_16_3B_16_4B_16_5B_16_6B_16_7B_16_8B_16_9B_16_10B_16_11B_16_12B_16_13B_16_14B_16_15B_16_16B_16_17C_1_1C_1_2C_1_3C_1_4C_2_1C_2_2C_2_3C_2_4C_3_1C_3_2C_3_3C_3_4C_4_1C_4_2C_4_3C_4_4C_5_1C_5_2C_5_3C_5_4C_6_1C_6_2C_6_3C_6_4C_7_1C_7_2C_7_3C_7_4C_8_1C_8_2C_8_3C_8_4C_9_1C_9_2C_9_3C_9_4C_10_1C_10_2C_10_3C_10_4C_11_1C_11_2C_11_3C_11_4C_12_1C_12_2C_12_3C_12_4C_13_1C_13_2C_13_3C_13_4C_14_1C_14_2C_14_3C_14_4C_15_1C_15_2C_15_3C_15_4C_16_1C_16_2C_16_3C_16_4C_17_1C_17_2C_17_3C_17_4=TraceMulA_3_1A_3_2A_3_3A_3_4A_4_1A_4_2A_4_3A_4_4B_1_3-B_5_3-B_1_9B_1_8-B_5_8-B_1_10-B_5_1+B_1_1-B_1_11B_1_2-B_5_2-B_1_12B_2_3-B_6_3-B_2_9B_2_8-B_6_8-B_2_10B_2_1-B_6_1-B_2_11B_2_2-B_6_2-B_2_12B_3_3-B_7_3-B_3_9B_3_8-B_7_8-B_3_10B_3_1-B_7_1-B_3_11B_3_2-B_7_2-B_3_12B_4_3-B_8_3-B_4_9B_4_8-B_8_8-B_4_10B_4_1-B_8_1-B_4_11B_4_2-B_8_2-B_4_12C_3_1+C_3_3C_3_2+C_3_4C_8_1+C_8_3C_8_2+C_8_4C_1_1+C_1_3C_1_2+C_1_4C_2_1+C_2_3C_2_2+C_2_4+TraceMulA_1_5A_1_6A_1_7A_1_8A_2_5A_2_6A_2_7A_2_8B_13_3-B_1_4+B_5_4-B_13_4-B_5_9B_13_8-B_1_5+B_5_5-B_13_5-B_5_10B_13_1-B_1_6+B_5_6-B_13_6-B_5_11B_13_2-B_1_7+B_5_7-B_13_7-B_5_12B_14_3-B_2_4+B_6_4-B_14_4-B_6_9B_14_8-B_2_5+B_6_5-B_14_5-B_6_10B_14_1-B_2_6+B_6_6-B_14_6-B_6_11B_14_2-B_2_7+B_6_7-B_14_7-B_6_12B_15_3-B_3_4+B_7_4-B_15_4-B_7_9B_15_8-B_3_5+B_7_5-B_15_5-B_7_10B_15_1-B_3_6+B_7_6-B_15_6-B_7_11B_15_2-B_3_7+B_7_7-B_15_7-B_7_12B_16_3-B_4_4+B_8_4-B_16_4-B_8_9B_16_8-B_4_5+B_8_5-B_16_5-B_8_10B_16_1-B_4_6+B_8_6-B_16_6-B_8_11B_16_2-B_4_7+B_8_7-B_16_7-B_8_12C_4_1+C_4_3C_4_2+C_4_4C_5_1+C_5_3C_5_4+C_5_2C_6_1+C_6_3C_6_2+C_6_4C_7_1+C_7_3C_7_2+C_7_4+TraceMulA_1_9A_1_10A_1_11A_1_12A_2_9A_2_10A_2_11A_2_12-B_9_4-B_1_9+B_9_9-B_13_9-B_9_5-B_1_10+B_9_10-B_13_10-B_9_6-B_1_11+B_9_11-B_13_11-B_9_7-B_1_12+B_9_12-B_13_12-B_10_4-B_2_9+B_10_9-B_14_9-B_10_5-B_2_10+B_10_10-B_14_10-B_10_6-B_2_11+B_10_11-B_14_11-B_10_7-B_2_12+B_10_12-B_14_12-B_11_4-B_3_9+B_11_9-B_15_9-B_11_5-B_3_10+B_11_10-B_15_10-B_11_6-B_3_11+B_11_11-B_15_11-B_11_7-B_3_12+B_11_12-B_15_12-B_12_4-B_4_9+B_12_9-B_16_9-B_12_5-B_4_10+B_12_10-B_16_10-B_12_6-B_4_11+B_12_11-B_16_11-B_12_7-B_4_12+B_12_12-B_16_12C_9_1C_9_2C_10_1C_10_2C_11_1C_11_2C_12_1C_12_2+TraceMulA_3_9A_3_10A_3_11A_3_12A_4_9A_4_10A_4_11A_4_12-B_9_3-B_5_9+B_9_9-B_9_14-B_9_8-B_5_10+B_9_10-B_9_15-B_9_1-B_5_11+B_9_11-B_9_16-B_9_2-B_5_12+B_9_12-B_9_17-B_10_3-B_6_9+B_10_9-B_10_14-B_10_8-B_6_10+B_10_10-B_10_15-B_10_1-B_6_11+B_10_11-B_10_16-B_10_2-B_6_12+B_10_12-B_10_17-B_11_3-B_7_9+B_11_9-B_11_14-B_11_8-B_7_10+B_11_10-B_11_15-B_11_1-B_7_11+B_11_11-B_11_16-B_11_2-B_7_12+B_11_12-B_11_17-B_12_3-B_8_9+B_12_9-B_12_14-B_12_8-B_8_10+B_12_10-B_12_15-B_12_1-B_8_11+B_12_11-B_12_16-B_12_2-B_8_12+B_12_12-B_12_17C_9_3C_9_4C_10_3C_10_4C_11_3C_11_4C_12_3C_12_4+TraceMulA_3_13A_3_14A_3_15A_3_16A_4_13A_4_14A_4_15A_4_16B_1_13-B_5_13+B_13_13B_13_3-B_13_9+B_1_14-B_5_14+B_13_14B_13_8-B_13_10+B_1_15-B_5_15+B_13_15B_13_1-B_13_11+B_1_16-B_5_16+B_13_16B_13_2-B_13_12+B_1_17-B_5_17+B_13_17B_2_13-B_6_13+B_14_13B_14_3-B_14_9+B_2_14-B_6_14+B_14_14B_14_8-B_14_10+B_2_15-B_6_15+B_14_15B_14_1-B_14_11+B_2_16-B_6_16+B_14_16B_14_2-B_14_12+B_2_17-B_6_17+B_14_17B_3_13-B_7_13+B_15_13B_15_3-B_15_9+B_3_14-B_7_14+B_15_14B_15_8-B_15_10+B_3_15-B_7_15+B_15_15B_15_1-B_15_11+B_3_16-B_7_16+B_15_16B_15_2-B_15_12+B_3_17-B_7_17+B_15_17B_4_13-B_8_13+B_16_13B_16_3-B_16_9+B_4_14-B_8_14+B_16_14B_16_8-B_16_10+B_4_15-B_8_15+B_16_15B_16_1-B_16_11+B_4_16-B_8_16+B_16_16B_16_2-B_16_12+B_4_17-B_8_17+B_16_17C_13_1+C_13_3C_13_2+C_13_4C_14_1+C_14_3C_14_2+C_14_4C_15_1+C_15_3C_15_2+C_15_4C_16_1+C_16_3C_16_2+C_16_4C_17_1+C_17_3C_17_2+C_17_4+TraceMulA_1_1+A_1_5A_1_2+A_1_6A_1_3+A_1_7A_1_4+A_1_8A_2_1+A_2_5A_2_2+A_2_6A_2_3+A_2_7A_2_4+A_2_8B_13_3+B_1_4B_13_8+B_1_5B_13_1+B_1_6B_13_2+B_1_7B_14_3+B_2_4B_14_8+B_2_5B_14_1+B_2_6B_14_2+B_2_7B_15_3+B_3_4B_15_8+B_3_5B_15_1+B_3_6B_15_2+B_3_7B_16_3+B_4_4B_16_8+B_4_5B_16_1+B_4_6B_16_2+B_4_7C_3_1+C_4_1C_3_2+C_4_2C_5_1+C_8_1C_5_2+C_8_2C_1_1+C_6_1C_1_2+C_6_2C_2_1+C_7_1C_2_2+C_7_2+TraceMulA_1_1+A_1_9A_1_2+A_1_10A_1_3+A_1_11A_1_4+A_1_12A_2_1+A_2_9A_2_2+A_2_10A_2_3+A_2_11A_2_4+A_2_12B_1_9B_1_10B_1_11B_1_12B_2_9B_2_10B_2_11B_2_12B_3_9B_3_10B_3_11B_3_12B_4_9B_4_10B_4_11B_4_12C_3_1+C_9_1+C_3_3+C_9_3C_3_2+C_9_2+C_3_4+C_9_4C_10_1+C_8_1+C_8_3+C_10_3C_10_2+C_8_2+C_8_4+C_10_4C_1_1+C_11_1+C_1_3+C_11_3C_1_2+C_11_2+C_1_4+C_11_4C_2_1+C_12_1+C_2_3+C_12_3C_2_2+C_12_2+C_2_4+C_12_4+TraceMulA_1_1-A_3_1A_1_2-A_3_2A_1_3-A_3_3A_1_4-A_3_4A_2_1-A_4_1A_2_2-A_4_2A_2_3-A_4_3A_2_4-A_4_4B_1_3-B_9_3-B_1_4B_1_8-B_9_8-B_1_5B_1_1-B_9_1-B_1_6B_1_2-B_9_2-B_1_7B_2_3-B_10_3-B_2_4B_2_8-B_10_8-B_2_5B_2_1-B_10_1-B_2_6B_2_2-B_10_2-B_2_7B_3_3-B_11_3-B_3_4B_3_8-B_11_8-B_3_5B_3_1-B_11_1-B_3_6B_3_2-B_11_2-B_3_7B_4_3-B_12_3-B_4_4B_4_8-B_12_8-B_4_5B_4_1-B_12_1-B_4_6B_4_2-B_12_2-B_4_7C_3_1C_3_2C_8_1C_8_2C_1_1C_1_2C_2_1C_2_2+TraceMulA_3_1+A_1_5A_3_2+A_1_6A_3_3+A_1_7A_3_4+A_1_8A_4_1+A_2_5A_4_2+A_2_6A_4_3+A_2_7A_4_4+A_2_8B_5_3-B_1_4B_5_8-B_1_5B_5_1-B_1_6B_5_2-B_1_7B_6_3-B_2_4B_6_8-B_2_5B_6_1-B_2_6B_6_2-B_2_7B_7_3-B_3_4B_7_8-B_3_5B_7_1-B_3_6B_7_2-B_3_7B_8_3-B_4_4B_8_8-B_4_5B_8_1-B_4_6B_8_2-B_4_7C_3_1-C_4_3C_3_2-C_4_4C_8_1-C_5_3C_8_2-C_5_4C_1_1-C_6_3C_1_2-C_6_4C_2_1-C_7_3C_2_2-C_7_4+TraceMulA_3_1+A_3_5A_3_2+A_3_6A_3_3+A_3_7A_3_4+A_3_8A_4_1+A_4_5A_4_2+A_4_6A_4_3+A_4_7A_4_4+A_4_8B_5_3+B_1_14B_5_8+B_1_15B_5_1+B_1_16B_5_2+B_1_17B_6_3+B_2_14B_6_8+B_2_15B_6_1+B_2_16B_6_2+B_2_17B_7_3+B_3_14B_7_8+B_3_15B_7_1+B_3_16B_7_2+B_3_17B_8_3+B_4_14B_8_8+B_4_15B_8_1+B_4_16B_8_2+B_4_17C_4_3+C_3_3C_3_4+C_4_4C_5_3+C_8_3C_5_4+C_8_4C_1_3+C_6_3C_1_4+C_6_4C_2_3+C_7_3C_2_4+C_7_4+TraceMulA_1_5+A_1_13A_1_6+A_1_14A_1_7+A_1_15A_1_8+A_1_16A_2_5+A_2_13A_2_6+A_2_14A_2_7+A_2_15A_2_8+A_2_16-B_13_3+B_13_4-B_13_8+B_13_5-B_13_1+B_13_6-B_13_2+B_13_7-B_14_3+B_14_4-B_14_8+B_14_5-B_14_1+B_14_6-B_14_2+B_14_7-B_15_3+B_15_4-B_15_8+B_15_5-B_15_1+B_15_6-B_15_2+B_15_7-B_16_3+B_16_4-B_16_8+B_16_5-B_16_1+B_16_6-B_16_2+B_16_7C_4_1+C_14_1C_4_2+C_14_2C_5_1+C_15_1C_5_2+C_15_2C_6_1+C_16_1C_6_2+C_16_2C_7_1+C_17_1C_7_2+C_17_2+TraceMulA_1_5-A_3_5A_1_6-A_3_6A_1_7-A_3_7A_1_8-A_3_8-A_4_5+A_2_5-A_4_6+A_2_6A_2_7-A_4_7A_2_8-A_4_8B_5_3-B_5_4+B_9_4-B_1_14+B_5_14B_5_8-B_5_5+B_9_5-B_1_15+B_5_15B_5_1-B_5_6+B_9_6-B_1_16+B_5_16B_5_2-B_5_7+B_9_7-B_1_17+B_5_17B_6_3-B_6_4+B_10_4-B_2_14+B_6_14B_6_8-B_6_5+B_10_5-B_2_15+B_6_15B_6_1-B_6_6+B_10_6-B_2_16+B_6_16B_6_2-B_6_7+B_10_7-B_2_17+B_6_17B_7_3-B_7_4+B_11_4-B_3_14+B_7_14B_7_8-B_7_5+B_11_5-B_3_15+B_7_15B_7_1-B_7_6+B_11_6-B_3_16+B_7_16B_7_2-B_7_7+B_11_7-B_3_17+B_7_17B_8_3-B_8_4+B_12_4-B_4_14+B_8_14B_8_8-B_8_5+B_12_5-B_4_15+B_8_15B_8_1-B_8_6+B_12_6-B_4_16+B_8_16B_8_2-B_8_7+B_12_7-B_4_17+B_8_17C_4_3C_4_4C_5_3C_5_4C_6_3C_6_4C_7_3C_7_4+TraceMulA_3_5+A_3_9A_3_6+A_3_10A_3_7+A_3_11A_3_8+A_3_12A_4_5+A_4_9A_4_6+A_4_10A_4_7+A_4_11A_4_8+A_4_12B_5_9B_5_10B_5_11B_5_12B_6_9B_6_10B_6_11B_6_12B_7_9B_7_10B_7_11B_7_12B_8_9B_8_10B_8_11B_8_12C_4_1+C_9_1+C_4_3+C_9_3C_4_2+C_9_2+C_4_4+C_9_4C_5_1+C_10_1+C_5_3+C_10_3C_5_2+C_10_2+C_5_4+C_10_4C_6_1+C_11_1+C_6_3+C_11_3C_6_2+C_11_2+C_6_4+C_11_4C_7_1+C_12_1+C_7_3+C_12_3C_7_2+C_12_2+C_7_4+C_12_4+TraceMulA_3_5+A_3_13A_3_6+A_3_14A_3_7+A_3_15A_3_8+A_3_16A_4_5+A_4_13A_4_6+A_4_14A_4_7+A_4_15A_4_8+A_4_16-B_1_13+B_5_13-B_1_14+B_5_14-B_1_15+B_5_15-B_1_16+B_5_16-B_1_17+B_5_17-B_2_13+B_6_13-B_2_14+B_6_14-B_2_15+B_6_15-B_2_16+B_6_16-B_2_17+B_6_17-B_3_13+B_7_13-B_3_14+B_7_14-B_3_15+B_7_15-B_3_16+B_7_16-B_3_17+B_7_17-B_4_13+B_8_13-B_4_14+B_8_14-B_4_15+B_8_15-B_4_16+B_8_16-B_4_17+B_8_17C_13_3C_13_4C_4_3+C_14_3C_4_4+C_14_4C_5_3+C_15_3C_5_4+C_15_4C_6_3+C_16_3C_6_4+C_16_4C_7_3+C_17_3C_7_4+C_17_4+TraceMulA_1_9+A_1_13A_1_10+A_1_14A_1_11+A_1_15A_1_12+A_1_16A_2_9+A_2_13A_2_10+A_2_14A_2_11+A_2_15A_2_12+A_2_16B_13_9B_13_10B_13_11B_13_12B_14_9B_14_10B_14_11B_14_12B_15_9B_15_10B_15_11B_15_12B_16_9B_16_10B_16_11B_16_12C_9_1+C_14_1+C_9_3+C_14_3C_9_2+C_14_2+C_9_4+C_14_4C_10_1+C_15_1+C_10_3+C_15_3C_10_2+C_15_2+C_10_4+C_15_4C_11_1+C_16_1+C_11_3+C_16_3C_11_2+C_16_2+C_11_4+C_16_4C_12_1+C_17_1+C_12_3+C_17_3C_12_2+C_17_2+C_12_4+C_17_4+TraceMulA_1_13-A_3_13A_1_14-A_3_14A_1_15-A_3_15A_1_16-A_3_16A_2_13-A_4_13A_2_14-A_4_14A_2_15-A_4_15A_2_16-A_4_16B_1_13-B_9_13+B_13_13B_13_3-B_13_4+B_1_14-B_9_14+B_13_14-B_13_5+B_13_8+B_1_15-B_9_15+B_13_15B_13_1-B_13_6+B_1_16-B_9_16+B_13_16B_13_2-B_13_7+B_1_17-B_9_17+B_13_17B_2_13-B_10_13+B_14_13B_14_3-B_14_4+B_2_14-B_10_14+B_14_14-B_14_5+B_14_8+B_2_15-B_10_15+B_14_15B_14_1-B_14_6+B_2_16-B_10_16+B_14_16B_14_2-B_14_7+B_2_17-B_10_17+B_14_17B_3_13-B_11_13+B_15_13B_15_3-B_15_4+B_3_14-B_11_14+B_15_14-B_15_5+B_15_8+B_3_15-B_11_15+B_15_15B_15_1-B_15_6+B_3_16-B_11_16+B_15_16B_15_2-B_15_7+B_3_17-B_11_17+B_15_17B_4_13-B_12_13+B_16_13B_16_3-B_16_4+B_4_14-B_12_14+B_16_14B_16_8-B_16_5+B_4_15-B_12_15+B_16_15B_16_1-B_16_6+B_4_16-B_12_16+B_16_16B_16_2-B_16_7+B_4_17-B_12_17+B_16_17C_13_1C_13_2C_14_1C_14_2C_15_1C_15_2C_16_1C_16_2C_17_1C_17_2+TraceMulA_1_5+A_3_13A_1_6+A_3_14A_1_7+A_3_15A_1_8+A_3_16A_2_5+A_4_13A_2_6+A_4_14A_2_7+A_4_15A_2_8+A_4_16-B_1_13+B_5_13B_13_3-B_13_4-B_1_14+B_5_14-B_13_5+B_13_8-B_1_15+B_5_15B_13_1-B_13_6-B_1_16+B_5_16B_13_2-B_13_7-B_1_17+B_5_17-B_2_13+B_6_13B_14_3-B_14_4-B_2_14+B_6_14-B_14_5+B_14_8-B_2_15+B_6_15B_14_1-B_14_6-B_2_16+B_6_16B_14_2-B_14_7-B_2_17+B_6_17-B_3_13+B_7_13B_15_3-B_15_4-B_3_14+B_7_14-B_15_5+B_15_8-B_3_15+B_7_15B_15_1-B_15_6-B_3_16+B_7_16B_15_2-B_15_7-B_3_17+B_7_17-B_4_13+B_8_13B_16_3-B_16_4-B_4_14+B_8_14B_16_8-B_16_5-B_4_15+B_8_15B_16_1-B_16_6-B_4_16+B_8_16B_16_2-B_16_7-B_4_17+B_8_17C_13_1C_13_2C_14_1-C_4_3C_14_2-C_4_4C_15_1-C_5_3C_15_2-C_5_4C_16_1-C_6_3C_16_2-C_6_4C_17_1-C_7_3C_17_2-C_7_4+TraceMulA_1_1-A_3_1+A_1_9A_1_2-A_3_2+A_1_10A_1_3-A_3_3+A_1_11A_1_4-A_3_4+A_1_12A_2_1-A_4_1+A_2_9A_2_2-A_4_2+A_2_10A_2_3-A_4_3+A_2_11A_2_4-A_4_4+A_2_12B_9_3-B_1_9B_9_8-B_1_10B_9_1-B_1_11B_9_2-B_1_12B_10_3-B_2_9B_10_8-B_2_10B_10_1-B_2_11B_10_2-B_2_12B_11_3-B_3_9B_11_8-B_3_10B_11_1-B_3_11B_11_2-B_3_12B_12_3-B_4_9B_12_8-B_4_10B_12_1-B_4_11B_12_2-B_4_12C_3_1+C_3_3+C_9_3C_3_2+C_3_4+C_9_4C_8_1+C_8_3+C_10_3C_8_2+C_8_4+C_10_4C_1_1+C_1_3+C_11_3C_1_2+C_1_4+C_11_4C_2_1+C_2_3+C_12_3C_2_2+C_2_4+C_12_4+TraceMulA_1_5-A_3_5-A_3_9A_1_6-A_3_6-A_3_10A_1_7-A_3_7-A_3_11A_1_8-A_3_8-A_3_12-A_4_5+A_2_5-A_4_9-A_4_6+A_2_6-A_4_10A_2_7-A_4_7-A_4_11A_2_8-A_4_8-A_4_12-B_9_4+B_5_9-B_9_5+B_5_10-B_9_6+B_5_11-B_9_7+B_5_12-B_10_4+B_6_9-B_10_5+B_6_10-B_10_6+B_6_11-B_10_7+B_6_12-B_11_4+B_7_9-B_11_5+B_7_10-B_11_6+B_7_11-B_11_7+B_7_12-B_12_4+B_8_9-B_12_5+B_8_10-B_12_6+B_8_11-B_12_7+B_8_12C_4_1+C_9_1+C_4_3C_4_2+C_9_2+C_4_4C_5_1+C_10_1+C_5_3C_5_2+C_10_2+C_5_4C_6_1+C_11_1+C_6_3C_6_2+C_11_2+C_6_4C_7_1+C_12_1+C_7_3C_7_2+C_12_2+C_7_4+TraceMulA_1_9+A_1_13-A_3_13A_1_10+A_1_14-A_3_14A_1_11+A_1_15-A_3_15A_1_12+A_1_16-A_3_16A_2_9+A_2_13-A_4_13A_2_10+A_2_14-A_4_14A_2_11+A_2_15-A_4_15A_2_12+A_2_16-A_4_16B_9_13-B_13_9+B_9_14-B_13_10+B_9_15-B_13_11+B_9_16-B_13_12+B_9_17B_10_13-B_14_9+B_10_14-B_14_10+B_10_15-B_14_11+B_10_16-B_14_12+B_10_17B_11_13-B_15_9+B_11_14-B_15_10+B_11_15-B_15_11+B_11_16-B_15_12+B_11_17B_12_13-B_16_9+B_12_14-B_16_10+B_12_15-B_16_11+B_12_16-B_16_12+B_12_17C_13_1+C_13_3C_13_2+C_13_4C_14_1+C_9_3+C_14_3C_14_2+C_9_4+C_14_4C_15_1+C_10_3+C_15_3C_15_2+C_10_4+C_15_4C_16_1+C_11_3+C_16_3C_16_2+C_11_4+C_16_4C_17_1+C_12_3+C_17_3C_17_2+C_12_4+C_17_4+TraceMulA_1_5-A_3_5+A_1_9-A_3_9A_1_6-A_3_6+A_1_10-A_3_10A_1_7-A_3_7+A_1_11-A_3_11A_1_8-A_3_8+A_1_12-A_3_12-A_4_5+A_2_5+A_2_9-A_4_9-A_4_6+A_2_6+A_2_10-A_4_10A_2_7-A_4_7+A_2_11-A_4_11A_2_8-A_4_8+A_2_12-A_4_12B_9_4B_9_5B_9_6B_9_7B_10_4B_10_5B_10_6B_10_7B_11_4B_11_5B_11_6B_11_7B_12_4B_12_5B_12_6B_12_7C_4_1+C_9_1C_4_2+C_9_2C_5_1+C_10_1C_5_2+C_10_2C_6_1+C_11_1C_6_2+C_11_2C_7_1+C_12_1C_7_2+C_12_2+TraceMulA_1_1+A_1_5-A_1_13+A_3_13A_1_2+A_1_6-A_1_14+A_3_14A_1_3+A_1_7-A_1_15+A_3_15A_1_4+A_1_8-A_1_16+A_3_16A_2_1+A_2_5-A_2_13+A_4_13A_2_2+A_2_6-A_2_14+A_4_14A_2_3+A_2_7-A_2_15+A_4_15A_2_4+A_2_8-A_2_16+A_4_16B_1_13-B_13_3+B_1_14-B_13_8+B_1_15-B_13_1+B_1_16-B_13_2+B_1_17B_2_13-B_14_3+B_2_14-B_14_8+B_2_15-B_14_1+B_2_16-B_14_2+B_2_17B_3_13-B_15_3+B_3_14-B_15_8+B_3_15-B_15_1+B_3_16-B_15_2+B_3_17B_4_13-B_16_3+B_4_14-B_16_8+B_4_15-B_16_1+B_4_16-B_16_2+B_4_17C_13_1+C_13_3C_13_2+C_13_4C_14_1-C_3_3-C_4_3+C_14_3C_14_2-C_3_4-C_4_4+C_14_4C_15_1-C_8_3-C_5_3+C_15_3C_15_2-C_8_4-C_5_4+C_15_4C_16_1-C_1_3-C_6_3+C_16_3C_16_2-C_1_4-C_6_4+C_16_4C_17_1-C_2_3-C_7_3+C_17_3C_17_2-C_2_4-C_7_4+C_17_4+TraceMulA_1_1-A_3_1+A_1_5-A_3_5-A_1_13+A_3_13A_1_2-A_3_2+A_1_6-A_3_6-A_1_14+A_3_14A_1_3-A_3_3+A_1_7-A_3_7-A_1_15+A_3_15A_1_4-A_3_4+A_1_8-A_3_8-A_1_16+A_3_16A_2_1-A_4_1+A_2_5-A_4_5-A_2_13+A_4_13A_2_2-A_4_2+A_2_6-A_4_6-A_2_14+A_4_14A_2_3-A_4_3+A_2_7-A_4_7-A_2_15+A_4_15A_2_4-A_4_4+A_2_8-A_4_8-A_2_16+A_4_16B_1_13B_1_14B_1_15B_1_16B_1_17B_2_13B_2_14B_2_15B_2_16B_2_17B_3_13B_3_14B_3_15B_3_16B_3_17B_4_13B_4_14B_4_15B_4_16B_4_17-C_13_3-C_13_4C_4_3+C_3_3-C_14_3C_3_4+C_4_4-C_14_4C_5_3+C_8_3-C_15_3C_5_4+C_8_4-C_15_4C_1_3+C_6_3-C_16_3C_1_4+C_6_4-C_16_4C_2_3+C_7_3-C_17_3C_2_4+C_7_4-C_17_4+TraceMul-A_1_1-A_1_5+A_1_13-A_1_2-A_1_6+A_1_14-A_1_3-A_1_7+A_1_15-A_1_4-A_1_8+A_1_16-A_2_1-A_2_5+A_2_13-A_2_2-A_2_6+A_2_14-A_2_3-A_2_7+A_2_15-A_2_4-A_2_8+A_2_16B_13_3B_13_8B_13_1B_13_2B_14_3B_14_8B_14_1B_14_2B_15_3B_15_8B_15_1B_15_2B_16_3B_16_8B_16_1B_16_2C_3_1+C_4_1-C_14_1+C_3_3+C_4_3-C_14_3C_3_2+C_4_2-C_14_2+C_3_4+C_4_4-C_14_4C_5_1+C_8_1-C_15_1+C_8_3+C_5_3-C_15_3C_5_2+C_8_2-C_15_2+C_8_4+C_5_4-C_15_4C_1_1+C_6_1-C_16_1+C_1_3+C_6_3-C_16_3C_1_2+C_6_2-C_16_2+C_1_4+C_6_4-C_16_4C_2_1+C_7_1-C_17_1+C_2_3+C_7_3-C_17_3C_2_2+C_7_2-C_17_2+C_2_4+C_7_4-C_17_4+TraceMul-A_1_1+A_3_1-A_1_9+A_3_9-A_1_2+A_3_2-A_1_10+A_3_10-A_1_3+A_3_3-A_1_11+A_3_11-A_1_4+A_3_4-A_1_12+A_3_12-A_2_1+A_4_1-A_2_9+A_4_9-A_2_2+A_4_2-A_2_10+A_4_10A_4_3-A_2_3-A_2_11+A_4_11-A_2_4+A_4_4-A_2_12+A_4_12B_9_3B_9_8B_9_1B_9_2B_10_3B_10_8B_10_1B_10_2B_11_3B_11_8B_11_1B_11_2B_12_3B_12_8B_12_1B_12_2C_3_3+C_9_3C_3_4+C_9_4C_8_3+C_10_3C_8_4+C_10_4C_1_3+C_11_3C_1_4+C_11_4C_2_3+C_12_3C_2_4+C_12_4+TraceMul-A_1_9+A_3_9-A_1_13+A_3_13-A_1_10+A_3_10-A_1_14+A_3_14-A_1_11+A_3_11-A_1_15+A_3_15-A_1_12+A_3_12-A_1_16+A_3_16-A_2_9+A_4_9-A_2_13+A_4_13-A_2_10+A_4_10-A_2_14+A_4_14-A_2_11+A_4_11-A_2_15+A_4_15-A_2_12+A_4_12-A_2_16+A_4_16B_9_13B_9_14B_9_15B_9_16B_9_17B_10_13B_10_14B_10_15B_10_16B_10_17B_11_13B_11_14B_11_15B_11_16B_11_17B_12_13B_12_14B_12_15B_12_16B_12_17C_13_3C_13_4C_9_3+C_14_3C_9_4+C_14_4C_10_3+C_15_3C_10_4+C_15_4C_11_3+C_16_3C_11_4+C_16_4C_12_3+C_17_3C_12_4+C_17_4

N.B.: for any matrices A, B and C such that the expression Tr(Mul(A,B,C)) is defined, one can construct several trilinear homogeneous polynomials P(A,B,C) such that P(A,B,C)=Tr(Mul(A,B,C)) (P(A,B,C) variables are A,B and C's coefficients). Each trilinear P expression encodes a matrix multiplication algorithm: the coefficient in C_i_j of P(A,B,C) is the (i,j)-th entry of the matrix product Mul(A,B)=Transpose(C).

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table