Description of fast matrix multiplication algorithm: ⟨4×15×32:1280⟩

Algorithm type

4XY15Z+4X4Y8Z4+4X2Y12Z2+32X4Y6Z4+4X2Y10Z2+40XY12Z+32X2Y9Z2+28X4Y4Z4+40X2Y8Z2+44XY9Z+72X2Y6Z2+48X2Y4Z2+36XY6Z+96X2Y3Z2+12XY5Z+152X2Y2Z2+120XY4Z+200XY3Z+108XY2Z+204XYZ4XY15Z4X4Y8Z44X2Y12Z232X4Y6Z44X2Y10Z240XY12Z32X2Y9Z228X4Y4Z440X2Y8Z244XY9Z72X2Y6Z248X2Y4Z236XY6Z96X2Y3Z212XY5Z152X2Y2Z2120XY4Z200XY3Z108XY2Z204XYZ4*X*Y^15*Z+4*X^4*Y^8*Z^4+4*X^2*Y^12*Z^2+32*X^4*Y^6*Z^4+4*X^2*Y^10*Z^2+40*X*Y^12*Z+32*X^2*Y^9*Z^2+28*X^4*Y^4*Z^4+40*X^2*Y^8*Z^2+44*X*Y^9*Z+72*X^2*Y^6*Z^2+48*X^2*Y^4*Z^2+36*X*Y^6*Z+96*X^2*Y^3*Z^2+12*X*Y^5*Z+152*X^2*Y^2*Z^2+120*X*Y^4*Z+200*X*Y^3*Z+108*X*Y^2*Z+204*X*Y*Z

Algorithm definition

The algorithm ⟨4×15×32:1280⟩ is the (Kronecker) tensor product of ⟨2×3×4:20⟩ with ⟨2×5×8:64⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table