Description of fast matrix multiplication algorithm: ⟨4×15×32:1260⟩

Algorithm type

4X2Y15Z2+4X4Y10Z4+28XY15Z+16X4Y8Z4+16X2Y12Z2+4X4Y6Z4+28X2Y10Z2+24XY12Z+4X2Y9Z2+44X4Y4Z4+24X2Y8Z2+32XY9Z+76X2Y6Z2+12X2Y5Z2+80X2Y4Z2+32XY6Z+12X2Y3Z2+84XY5Z+200X2Y2Z2+72XY4Z+164XY3Z+96XY2Z+204XYZ4X2Y15Z24X4Y10Z428XY15Z16X4Y8Z416X2Y12Z24X4Y6Z428X2Y10Z224XY12Z4X2Y9Z244X4Y4Z424X2Y8Z232XY9Z76X2Y6Z212X2Y5Z280X2Y4Z232XY6Z12X2Y3Z284XY5Z200X2Y2Z272XY4Z164XY3Z96XY2Z204XYZ4*X^2*Y^15*Z^2+4*X^4*Y^10*Z^4+28*X*Y^15*Z+16*X^4*Y^8*Z^4+16*X^2*Y^12*Z^2+4*X^4*Y^6*Z^4+28*X^2*Y^10*Z^2+24*X*Y^12*Z+4*X^2*Y^9*Z^2+44*X^4*Y^4*Z^4+24*X^2*Y^8*Z^2+32*X*Y^9*Z+76*X^2*Y^6*Z^2+12*X^2*Y^5*Z^2+80*X^2*Y^4*Z^2+32*X*Y^6*Z+12*X^2*Y^3*Z^2+84*X*Y^5*Z+200*X^2*Y^2*Z^2+72*X*Y^4*Z+164*X*Y^3*Z+96*X*Y^2*Z+204*X*Y*Z

Algorithm definition

The algorithm ⟨4×15×32:1260⟩ is the (Kronecker) tensor product of ⟨2×3×4:20⟩ with ⟨2×5×8:63⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table