Description of fast matrix multiplication algorithm: ⟨4×15×24:960⟩

Algorithm type

4XY15Z+4X4Y8Z4+4X2Y12Z2+20X4Y6Z4+4X2Y10Z2+24XY12Z+20X2Y9Z2+24X4Y4Z4+24X2Y8Z2+32XY9Z+56X2Y6Z2+44X2Y4Z2+32XY6Z+60X2Y3Z2+12XY5Z+124X2Y2Z2+72XY4Z+148XY3Z+96XY2Z+156XYZ4XY15Z4X4Y8Z44X2Y12Z220X4Y6Z44X2Y10Z224XY12Z20X2Y9Z224X4Y4Z424X2Y8Z232XY9Z56X2Y6Z244X2Y4Z232XY6Z60X2Y3Z212XY5Z124X2Y2Z272XY4Z148XY3Z96XY2Z156XYZ4*X*Y^15*Z+4*X^4*Y^8*Z^4+4*X^2*Y^12*Z^2+20*X^4*Y^6*Z^4+4*X^2*Y^10*Z^2+24*X*Y^12*Z+20*X^2*Y^9*Z^2+24*X^4*Y^4*Z^4+24*X^2*Y^8*Z^2+32*X*Y^9*Z+56*X^2*Y^6*Z^2+44*X^2*Y^4*Z^2+32*X*Y^6*Z+60*X^2*Y^3*Z^2+12*X*Y^5*Z+124*X^2*Y^2*Z^2+72*X*Y^4*Z+148*X*Y^3*Z+96*X*Y^2*Z+156*X*Y*Z

Algorithm definition

The algorithm ⟨4×15×24:960⟩ is the (Kronecker) tensor product of ⟨2×3×4:20⟩ with ⟨2×5×6:48⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table