Description of fast matrix multiplication algorithm: ⟨4×15×21:825⟩

Algorithm type

6X4Y10Z4+6X4Y8Z4+3X4Y6Z4+30X2Y10Z2+30X4Y4Z4+33X2Y8Z2+36XY10Z+3X4Y2Z4+18X2Y6Z2+42XY8Z+12X2Y5Z2+90X2Y4Z2+6X2Y2Z4+24XY6Z+6X2Y3Z2+36XY5Z+108X2Y2Z2+78XY4Z+6X2YZ2+24XY3Z+12XY2Z2+120XY2Z+12XYZ2+84XYZ6X4Y10Z46X4Y8Z43X4Y6Z430X2Y10Z230X4Y4Z433X2Y8Z236XY10Z3X4Y2Z418X2Y6Z242XY8Z12X2Y5Z290X2Y4Z26X2Y2Z424XY6Z6X2Y3Z236XY5Z108X2Y2Z278XY4Z6X2YZ224XY3Z12XY2Z2120XY2Z12XYZ284XYZ6*X^4*Y^10*Z^4+6*X^4*Y^8*Z^4+3*X^4*Y^6*Z^4+30*X^2*Y^10*Z^2+30*X^4*Y^4*Z^4+33*X^2*Y^8*Z^2+36*X*Y^10*Z+3*X^4*Y^2*Z^4+18*X^2*Y^6*Z^2+42*X*Y^8*Z+12*X^2*Y^5*Z^2+90*X^2*Y^4*Z^2+6*X^2*Y^2*Z^4+24*X*Y^6*Z+6*X^2*Y^3*Z^2+36*X*Y^5*Z+108*X^2*Y^2*Z^2+78*X*Y^4*Z+6*X^2*Y*Z^2+24*X*Y^3*Z+12*X*Y^2*Z^2+120*X*Y^2*Z+12*X*Y*Z^2+84*X*Y*Z

Algorithm definition

The algorithm ⟨4×15×21:825⟩ is the (Kronecker) tensor product of ⟨2×3×3:15⟩ with ⟨2×5×7:55⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table