Description of fast matrix multiplication algorithm: ⟨4×15×18:720⟩

Algorithm type

3X4Y8Z4+15X4Y6Z4+3X2Y10Z2+18X4Y4Z4+24X2Y8Z2+6XY10Z+54X2Y6Z2+36XY8Z+66X2Y4Z2+48XY6Z+30X2Y3Z2+6XY5Z+75X2Y2Z2+84XY4Z+48XY3Z+126XY2Z+78XYZ3X4Y8Z415X4Y6Z43X2Y10Z218X4Y4Z424X2Y8Z26XY10Z54X2Y6Z236XY8Z66X2Y4Z248XY6Z30X2Y3Z26XY5Z75X2Y2Z284XY4Z48XY3Z126XY2Z78XYZ3*X^4*Y^8*Z^4+15*X^4*Y^6*Z^4+3*X^2*Y^10*Z^2+18*X^4*Y^4*Z^4+24*X^2*Y^8*Z^2+6*X*Y^10*Z+54*X^2*Y^6*Z^2+36*X*Y^8*Z+66*X^2*Y^4*Z^2+48*X*Y^6*Z+30*X^2*Y^3*Z^2+6*X*Y^5*Z+75*X^2*Y^2*Z^2+84*X*Y^4*Z+48*X*Y^3*Z+126*X*Y^2*Z+78*X*Y*Z

Algorithm definition

The algorithm ⟨4×15×18:720⟩ is the (Kronecker) tensor product of ⟨2×3×3:15⟩ with ⟨2×5×6:48⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table