Description of fast matrix multiplication algorithm: ⟨4×14×32:1220⟩

Algorithm type

44X4Y4Z4+8X4Y3Z4+16XY9Z+16X3Y3Z4+28X2Y6Z2+16X2Y5Z2+116X2Y4Z2+40XY6Z+28X2Y3Z2+8XY5Z+212X2Y2Z2+48XY4Z+16XY3Z2+16X2YZ2+120XY3Z+264XY2Z+224XYZ44X4Y4Z48X4Y3Z416XY9Z16X3Y3Z428X2Y6Z216X2Y5Z2116X2Y4Z240XY6Z28X2Y3Z28XY5Z212X2Y2Z248XY4Z16XY3Z216X2YZ2120XY3Z264XY2Z224XYZ44*X^4*Y^4*Z^4+8*X^4*Y^3*Z^4+16*X*Y^9*Z+16*X^3*Y^3*Z^4+28*X^2*Y^6*Z^2+16*X^2*Y^5*Z^2+116*X^2*Y^4*Z^2+40*X*Y^6*Z+28*X^2*Y^3*Z^2+8*X*Y^5*Z+212*X^2*Y^2*Z^2+48*X*Y^4*Z+16*X*Y^3*Z^2+16*X^2*Y*Z^2+120*X*Y^3*Z+264*X*Y^2*Z+224*X*Y*Z

Algorithm definition

The algorithm ⟨4×14×32:1220⟩ is the (Kronecker) tensor product of ⟨1×1×2:2⟩ with ⟨4×14×16:610⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table