Description of fast matrix multiplication algorithm: ⟨4×13×32:1136⟩

Algorithm type

42X4Y4Z4+6X4Y3Z4+16XY9Z+12X3Y3Z4+40X2Y6Z2+12X2Y5Z2+84X2Y4Z2+48XY6Z+24X2Y3Z2+8XY5Z+212X2Y2Z2+16XY4Z+12XY3Z2+12X2YZ2+132XY3Z+224XY2Z+236XYZ42X4Y4Z46X4Y3Z416XY9Z12X3Y3Z440X2Y6Z212X2Y5Z284X2Y4Z248XY6Z24X2Y3Z28XY5Z212X2Y2Z216XY4Z12XY3Z212X2YZ2132XY3Z224XY2Z236XYZ42*X^4*Y^4*Z^4+6*X^4*Y^3*Z^4+16*X*Y^9*Z+12*X^3*Y^3*Z^4+40*X^2*Y^6*Z^2+12*X^2*Y^5*Z^2+84*X^2*Y^4*Z^2+48*X*Y^6*Z+24*X^2*Y^3*Z^2+8*X*Y^5*Z+212*X^2*Y^2*Z^2+16*X*Y^4*Z+12*X*Y^3*Z^2+12*X^2*Y*Z^2+132*X*Y^3*Z+224*X*Y^2*Z+236*X*Y*Z

Algorithm definition

The algorithm ⟨4×13×32:1136⟩ is the (Kronecker) tensor product of ⟨1×1×2:2⟩ with ⟨4×13×16:568⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table