Description of fast matrix multiplication algorithm: ⟨4×13×14:500⟩

Algorithm type

8X4Y8Z4+12X4Y4Z4+56X2Y8Z2+2X4Y2Z4+4X2Y6Z2+48XY8Z+4X2Y5Z2+6X3Y2Z3+28X2Y4Z2+72X2Y2Z2+16XY4Z+12X2YZ2+12XY3Z+120XY2Z+100XYZ8X4Y8Z412X4Y4Z456X2Y8Z22X4Y2Z44X2Y6Z248XY8Z4X2Y5Z26X3Y2Z328X2Y4Z272X2Y2Z216XY4Z12X2YZ212XY3Z120XY2Z100XYZ8*X^4*Y^8*Z^4+12*X^4*Y^4*Z^4+56*X^2*Y^8*Z^2+2*X^4*Y^2*Z^4+4*X^2*Y^6*Z^2+48*X*Y^8*Z+4*X^2*Y^5*Z^2+6*X^3*Y^2*Z^3+28*X^2*Y^4*Z^2+72*X^2*Y^2*Z^2+16*X*Y^4*Z+12*X^2*Y*Z^2+12*X*Y^3*Z+120*X*Y^2*Z+100*X*Y*Z

Algorithm definition

The algorithm ⟨4×13×14:500⟩ could be constructed using the following decomposition:

⟨4×13×14:500⟩ = ⟨2×5×4:32⟩ + ⟨2×5×5:40⟩ + ⟨2×4×5:32⟩ + ⟨2×5×5:40⟩ + ⟨2×5×4:32⟩ + ⟨2×4×5:32⟩ + ⟨2×5×5:40⟩ + ⟨2×4×5:32⟩ + ⟨2×4×5:32⟩ + ⟨2×4×4:26⟩ + ⟨2×5×5:40⟩ + ⟨2×4×5:32⟩ + ⟨2×4×5:32⟩ + ⟨2×4×4:26⟩ + ⟨2×4×5:32⟩.

This decomposition is defined by the following equality:

TraceMulA_1_1A_1_2A_1_3A_1_4A_1_5A_1_6A_1_7A_1_8A_1_9A_1_10A_1_11A_1_12A_1_13A_2_1A_2_2A_2_3A_2_4A_2_5A_2_6A_2_7A_2_8A_2_9A_2_10A_2_11A_2_12A_2_13A_3_1A_3_2A_3_3A_3_4A_3_5A_3_6A_3_7A_3_8A_3_9A_3_10A_3_11A_3_12A_3_13A_4_1A_4_2A_4_3A_4_4A_4_5A_4_6A_4_7A_4_8A_4_9A_4_10A_4_11A_4_12A_4_13B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_4_1B_4_2B_4_3B_4_4B_4_5B_4_6B_4_7B_4_8B_4_9B_4_10B_4_11B_4_12B_4_13B_4_14B_5_1B_5_2B_5_3B_5_4B_5_5B_5_6B_5_7B_5_8B_5_9B_5_10B_5_11B_5_12B_5_13B_5_14B_6_1B_6_2B_6_3B_6_4B_6_5B_6_6B_6_7B_6_8B_6_9B_6_10B_6_11B_6_12B_6_13B_6_14B_7_1B_7_2B_7_3B_7_4B_7_5B_7_6B_7_7B_7_8B_7_9B_7_10B_7_11B_7_12B_7_13B_7_14B_8_1B_8_2B_8_3B_8_4B_8_5B_8_6B_8_7B_8_8B_8_9B_8_10B_8_11B_8_12B_8_13B_8_14B_9_1B_9_2B_9_3B_9_4B_9_5B_9_6B_9_7B_9_8B_9_9B_9_10B_9_11B_9_12B_9_13B_9_14B_10_1B_10_2B_10_3B_10_4B_10_5B_10_6B_10_7B_10_8B_10_9B_10_10B_10_11B_10_12B_10_13B_10_14B_11_1B_11_2B_11_3B_11_4B_11_5B_11_6B_11_7B_11_8B_11_9B_11_10B_11_11B_11_12B_11_13B_11_14B_12_1B_12_2B_12_3B_12_4B_12_5B_12_6B_12_7B_12_8B_12_9B_12_10B_12_11B_12_12B_12_13B_12_14B_13_1B_13_2B_13_3B_13_4B_13_5B_13_6B_13_7B_13_8B_13_9B_13_10B_13_11B_13_12B_13_13B_13_14C_1_1C_1_2C_1_3C_1_4C_2_1C_2_2C_2_3C_2_4C_3_1C_3_2C_3_3C_3_4C_4_1C_4_2C_4_3C_4_4C_5_1C_5_2C_5_3C_5_4C_6_1C_6_2C_6_3C_6_4C_7_1C_7_2C_7_3C_7_4C_8_1C_8_2C_8_3C_8_4C_9_1C_9_2C_9_3C_9_4C_10_1C_10_2C_10_3C_10_4C_11_1C_11_2C_11_3C_11_4C_12_1C_12_2C_12_3C_12_4C_13_1C_13_2C_13_3C_13_4C_14_1C_14_2C_14_3C_14_4=TraceMulA_3_9A_3_10A_3_11A_3_12A_3_13A_4_9A_4_10A_4_11A_4_12A_4_13B_9_1+B_9_6B_9_2+B_9_7B_9_3+B_9_8B_9_4+B_9_9B_4_1+B_10_1+B_10_6B_4_2+B_10_2+B_10_7B_4_3+B_10_3+B_10_8B_4_4+B_10_4+B_10_9B_1_1+B_11_1+B_11_6B_1_2+B_11_2+B_11_7B_1_3+B_11_3+B_11_8B_1_4+B_11_4+B_11_9B_2_1+B_12_1+B_12_6B_2_2+B_12_2+B_12_7B_2_3+B_12_3+B_12_8B_2_4+B_12_4+B_12_9B_3_1+B_13_1+B_13_6B_3_2+B_13_2+B_13_7B_3_3+B_13_3+B_13_8B_3_4+B_13_4+B_13_9C_1_1+C_1_3C_1_2+C_1_4C_2_1+C_2_3C_2_2+C_2_4C_3_1+C_3_3C_3_2+C_3_4C_4_1+C_4_3C_4_2+C_4_4+TraceMul-A_3_9A_1_4-A_3_10A_1_1-A_3_11A_1_2-A_3_12A_1_3-A_3_13-A_4_9A_2_4-A_4_10A_2_1-A_4_11A_2_2-A_4_12A_2_3-A_4_13B_9_10B_9_11B_9_12B_9_13B_9_14B_10_10B_4_1+B_10_11B_4_2+B_10_12B_4_3+B_10_13B_4_4+B_10_14B_11_10B_1_1+B_11_11B_1_2+B_11_12B_1_3+B_11_13B_1_4+B_11_14B_12_10B_2_1+B_12_11B_2_2+B_12_12B_2_3+B_12_13B_2_4+B_12_14B_13_10B_3_1+B_13_11B_3_2+B_13_12B_3_3+B_13_13B_3_4+B_13_14-C_10_3-C_10_4C_1_1-C_11_3C_1_2-C_11_4C_2_1-C_12_3C_2_2-C_12_4C_3_1-C_13_3C_3_2-C_13_4C_4_1-C_14_3C_4_2-C_14_4+TraceMulA_1_4A_1_1A_1_2A_1_3A_2_4A_2_1A_2_2A_2_3B_4_5-B_4_10-B_10_10B_4_6-B_4_11-B_10_11B_4_7-B_4_12-B_10_12B_4_8-B_4_13-B_10_13B_4_9-B_4_14-B_10_14B_1_5-B_1_10-B_11_10B_1_6-B_1_11-B_11_11B_1_7-B_1_12-B_11_12B_1_8-B_1_13-B_11_13B_1_9-B_1_14-B_11_14B_2_5-B_2_10-B_12_10B_2_6-B_2_11-B_12_11B_2_7-B_2_12-B_12_12B_2_8-B_2_13-B_12_13B_2_9-B_2_14-B_12_14B_3_5-B_3_10-B_13_10B_3_6-B_3_11-B_13_11B_3_7-B_3_12-B_13_12B_3_8-B_3_13-B_13_13B_3_9-B_3_14-B_13_14-C_10_1-C_10_3-C_10_2-C_10_4-C_11_1-C_11_3-C_11_2-C_11_4-C_12_1-C_12_3-C_12_2-C_12_4-C_13_1-C_13_3-C_13_2-C_13_4-C_14_1-C_14_3-C_14_2-C_14_4+TraceMul-A_1_9A_1_4-A_1_10A_1_1-A_1_11A_1_2-A_1_12A_1_3-A_1_13-A_2_9A_2_4-A_2_10A_2_1-A_2_11A_2_2-A_2_12A_2_3-A_2_13B_9_10B_9_11B_9_12B_9_13B_9_14B_10_10B_10_11B_10_12B_10_13B_10_14B_11_10B_11_11B_11_12B_11_13B_11_14B_12_10B_12_11B_12_12B_12_13B_12_14B_13_10B_13_11B_13_12B_13_13B_13_14-C_10_1-C_10_2-C_1_1-C_11_1-C_1_2-C_11_2-C_2_1-C_12_1-C_2_2-C_12_2-C_3_1-C_13_1-C_3_2-C_13_2-C_4_1-C_14_1-C_4_2-C_14_2+TraceMulA_1_9-A_3_9A_1_10-A_3_10A_1_11-A_3_11A_1_12-A_3_12A_1_13-A_3_13A_2_9-A_4_9A_2_10-A_4_10A_2_11-A_4_11A_2_12-A_4_12A_2_13-A_4_13B_9_1-B_9_11B_9_2-B_9_12B_9_3-B_9_13B_9_4-B_9_14B_5_1+B_10_1-B_10_11B_5_2+B_10_2-B_10_12B_5_3+B_10_3-B_10_13B_5_4+B_10_4-B_10_14B_6_1+B_11_1-B_11_11B_6_2+B_11_2-B_11_12B_6_3+B_11_3-B_11_13B_6_4+B_11_4-B_11_14B_7_1+B_12_1-B_12_11B_7_2+B_12_2-B_12_12B_7_3+B_12_3-B_12_13B_7_4+B_12_4-B_12_14B_8_1+B_13_1-B_13_11B_8_2+B_13_2-B_13_12B_8_3+B_13_3-B_13_13B_8_4+B_13_4-B_13_14C_1_1C_1_2C_2_1C_2_2C_3_1C_3_2C_4_1C_4_2+TraceMulA_1_5A_1_6A_1_7A_1_8A_2_5A_2_6A_2_7A_2_8B_5_5+B_10_5-B_5_10B_5_6+B_10_6-B_5_11B_5_7+B_10_7-B_5_12B_5_8+B_10_8-B_5_13B_5_9+B_10_9-B_5_14B_6_5+B_11_5-B_6_10B_6_6+B_11_6-B_6_11B_6_7+B_11_7-B_6_12B_6_8+B_11_8-B_6_13B_6_9+B_11_9-B_6_14B_7_5+B_12_5-B_7_10B_7_6+B_12_6-B_7_11B_7_7+B_12_7-B_7_12B_7_8+B_12_8-B_7_13B_7_9+B_12_9-B_7_14B_8_5+B_13_5-B_8_10B_8_6+B_13_6-B_8_11B_8_7+B_13_7-B_8_12B_8_8+B_13_8-B_8_13B_8_9+B_13_9-B_8_14C_5_1C_5_2C_6_1C_6_2C_7_1C_7_2C_8_1C_8_2C_9_1C_9_2+TraceMul-A_1_9+A_3_9-A_1_10+A_1_5+A_3_10A_1_6-A_1_11+A_3_11A_1_7-A_1_12+A_3_12A_1_8-A_1_13+A_3_13-A_2_9+A_4_9-A_2_10+A_2_5+A_4_10A_2_6-A_2_11+A_4_11A_2_7-A_2_12+A_4_12A_2_8-A_2_13+A_4_13-B_9_5-B_9_6-B_9_7-B_9_8-B_9_9-B_10_5B_5_1-B_10_6B_5_2-B_10_7B_5_3-B_10_8B_5_4-B_10_9-B_11_5B_6_1-B_11_6B_6_2-B_11_7B_6_3-B_11_8B_6_4-B_11_9-B_12_5B_7_1-B_12_6B_7_2-B_12_7B_7_3-B_12_8B_7_4-B_12_9-B_13_5B_8_1-B_13_6B_8_2-B_13_7B_8_3-B_13_8B_8_4-B_13_9-C_5_3-C_5_4C_1_1+C_1_3-C_6_3C_1_2+C_1_4-C_6_4C_2_1+C_2_3-C_7_3C_2_2+C_2_4-C_7_4C_3_1+C_3_3-C_8_3C_3_2+C_3_4-C_8_4C_4_1+C_4_3-C_9_3C_4_2+C_4_4-C_9_4+TraceMulA_1_4-A_3_4+A_3_5A_1_1-A_3_1+A_3_6A_1_2-A_3_2+A_3_7A_1_3-A_3_3+A_3_8A_2_4-A_4_4+A_4_5A_2_1-A_4_1+A_4_6A_2_2-A_4_2+A_4_7A_2_3-A_4_3+A_4_8B_4_5+B_5_10B_4_6+B_5_11B_4_7+B_5_12B_4_8+B_5_13B_4_9+B_5_14B_1_5+B_6_10B_1_6+B_6_11B_1_7+B_6_12B_1_8+B_6_13B_1_9+B_6_14B_2_5+B_7_10B_2_6+B_7_11B_2_7+B_7_12B_2_8+B_7_13B_2_9+B_7_14B_3_5+B_8_10B_3_6+B_8_11B_3_7+B_8_12B_3_8+B_8_13B_3_9+B_8_14C_5_1+C_10_1+C_10_3C_5_2+C_10_2+C_10_4C_6_1+C_11_1+C_11_3C_6_2+C_11_2+C_11_4C_7_1+C_12_1+C_12_3C_7_2+C_12_2+C_12_4C_8_1+C_13_1+C_13_3C_8_2+C_13_2+C_13_4C_9_1+C_14_1+C_14_3C_9_2+C_14_2+C_14_4+TraceMulA_3_4-A_3_5A_3_1-A_3_6A_3_2-A_3_7-A_3_8+A_3_3A_4_4-A_4_5A_4_1-A_4_6A_4_2-A_4_7A_4_3-A_4_8B_4_5B_4_6B_4_7B_4_8B_4_9B_1_5B_1_6B_1_7B_1_8B_1_9B_2_5B_2_6B_2_7B_2_8B_2_9B_3_5B_3_6B_3_7B_3_8B_3_9C_5_1+C_10_1+C_5_3+C_10_3C_5_2+C_10_2+C_5_4+C_10_4C_6_1+C_11_1+C_6_3+C_11_3C_6_2+C_11_2+C_6_4+C_11_4C_7_1+C_12_1+C_7_3+C_12_3C_7_2+C_12_2+C_7_4+C_12_4C_8_1+C_13_1+C_8_3+C_13_3C_8_2+C_13_2+C_8_4+C_13_4C_9_1+C_14_1+C_9_3+C_14_3C_9_2+C_14_2+C_9_4+C_14_4+TraceMulA_1_5-A_3_5-A_1_10+A_3_10A_1_6-A_3_6-A_1_11+A_3_11A_1_7-A_3_7-A_1_12+A_3_12A_1_8-A_3_8-A_1_13+A_3_13-A_4_5+A_2_5-A_2_10+A_4_10-A_4_6+A_2_6-A_2_11+A_4_11A_2_7-A_4_7-A_2_12+A_4_12A_2_8-A_4_8-A_2_13+A_4_13B_5_1B_5_2B_5_3B_5_4B_6_1B_6_2B_6_3B_6_4B_7_1B_7_2B_7_3B_7_4B_8_1B_8_2B_8_3B_8_4-C_1_3+C_6_3-C_1_4+C_6_4-C_2_3+C_7_3-C_2_4+C_7_4-C_3_3+C_8_3-C_3_4+C_8_4-C_4_3+C_9_3-C_4_4+C_9_4+TraceMul-A_1_9-A_1_10+A_1_5A_1_6-A_1_11A_1_7-A_1_12A_1_8-A_1_13-A_2_9-A_2_10+A_2_5A_2_6-A_2_11A_2_7-A_2_12A_2_8-A_2_13B_9_5B_9_6B_9_7B_9_8B_9_9B_10_5B_10_6B_10_7B_10_8B_10_9B_11_5B_11_6B_11_7B_11_8B_11_9B_12_5B_12_6B_12_7B_12_8B_12_9B_13_5B_13_6B_13_7B_13_8B_13_9-C_5_1-C_5_3-C_5_2-C_5_4C_1_1-C_6_1+C_1_3-C_6_3C_1_2-C_6_2+C_1_4-C_6_4C_2_1-C_7_1+C_2_3-C_7_3C_2_2-C_7_2+C_2_4-C_7_4C_3_1-C_8_1+C_3_3-C_8_3C_3_2-C_8_2+C_3_4-C_8_4-C_9_1+C_4_1+C_4_3-C_9_3-C_9_2+C_4_2+C_4_4-C_9_4+TraceMulA_3_5A_3_6A_3_7A_3_8A_4_5A_4_6A_4_7A_4_8B_4_5+B_5_5B_5_1+B_4_6+B_5_6B_5_2+B_4_7+B_5_7B_5_3+B_4_8+B_5_8B_5_4+B_4_9+B_5_9B_1_5+B_6_5B_6_1+B_1_6+B_6_6B_6_2+B_1_7+B_6_7B_6_3+B_1_8+B_6_8B_6_4+B_1_9+B_6_9B_2_5+B_7_5B_7_1+B_2_6+B_7_6B_7_2+B_2_7+B_7_7B_7_3+B_2_8+B_7_8B_7_4+B_2_9+B_7_9B_3_5+B_8_5B_8_1+B_3_6+B_8_6B_8_2+B_3_7+B_8_7B_8_3+B_3_8+B_8_8B_8_4+B_3_9+B_8_9C_5_3C_5_4C_6_3C_6_4C_7_3C_7_4C_8_3C_8_4C_9_3C_9_4+TraceMulA_1_4-A_3_4-A_1_5+A_3_5A_1_1-A_3_1-A_1_6+A_3_6A_1_2-A_3_2-A_1_7+A_3_7A_1_3-A_3_3-A_1_8+A_3_8A_2_4-A_4_4-A_2_5+A_4_5A_2_1-A_4_1-A_2_6+A_4_6A_2_2-A_4_2-A_2_7+A_4_7A_2_3-A_4_3-A_2_8+A_4_8B_5_10B_5_11B_5_12B_5_13B_5_14B_6_10B_6_11B_6_12B_6_13B_6_14B_7_10B_7_11B_7_12B_7_13B_7_14B_8_10B_8_11B_8_12B_8_13B_8_14-C_5_1-C_10_1-C_5_2-C_10_2-C_6_1-C_11_1-C_6_2-C_11_2-C_7_1-C_12_1-C_7_2-C_12_2-C_8_1-C_13_1-C_8_2-C_13_2-C_9_1-C_14_1-C_9_2-C_14_2+TraceMulA_3_4-A_3_10A_3_1-A_3_11A_3_2-A_3_12A_3_3-A_3_13A_4_4-A_4_10A_4_1-A_4_11A_4_2-A_4_12A_4_3-A_4_13B_4_1B_4_2B_4_3B_4_4B_1_1B_1_2B_1_3B_1_4B_2_1B_2_2B_2_3B_2_4B_3_1B_3_2B_3_3B_3_4C_1_3+C_11_3C_1_4+C_11_4C_2_3+C_12_3C_2_4+C_12_4C_3_3+C_13_3C_3_4+C_13_4C_4_3+C_14_3C_4_4+C_14_4+TraceMulA_1_4-A_3_4A_1_1-A_3_1A_1_2-A_3_2A_1_3-A_3_3A_2_4-A_4_4A_2_1-A_4_1A_2_2-A_4_2A_2_3-A_4_3-B_4_10-B_5_10B_4_1-B_4_11-B_5_11B_4_2-B_4_12-B_5_12B_4_3-B_4_13-B_5_13B_4_4-B_4_14-B_5_14-B_1_10-B_6_10B_1_1-B_1_11-B_6_11B_1_2-B_1_12-B_6_12B_1_3-B_1_13-B_6_13B_1_4-B_1_14-B_6_14-B_2_10-B_7_10B_2_1-B_2_11-B_7_11B_2_2-B_2_12-B_7_12B_2_3-B_2_13-B_7_13B_2_4-B_2_14-B_7_14-B_3_10-B_8_10B_3_1-B_3_11-B_8_11B_3_2-B_3_12-B_8_12B_3_3-B_3_13-B_8_13B_3_4-B_3_14-B_8_14C_10_3C_10_4C_11_3C_11_4C_12_3C_12_4C_13_3C_13_4C_14_3C_14_4

N.B.: for any matrices A, B and C such that the expression Tr(Mul(A,B,C)) is defined, one can construct several trilinear homogeneous polynomials P(A,B,C) such that P(A,B,C)=Tr(Mul(A,B,C)) (P(A,B,C) variables are A,B and C's coefficients). Each trilinear P expression encodes a matrix multiplication algorithm: the coefficient in C_i_j of P(A,B,C) is the (i,j)-th entry of the matrix product Mul(A,B)=Transpose(C).

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table