Description of fast matrix multiplication algorithm: ⟨4×12×30:975⟩

Algorithm type

5X4Y8Z4+2X2Y12Z2+20X4Y6Z4+8XY12Z+8X2Y9Z2+20X4Y4Z4+26X2Y8Z2+16XY9Z+72X2Y6Z2+24XY8Z+66X2Y4Z2+60XY6Z+48X2Y3Z2+108X2Y2Z2+84XY4Z+120XY3Z+144XY2Z+144XYZ5X4Y8Z42X2Y12Z220X4Y6Z48XY12Z8X2Y9Z220X4Y4Z426X2Y8Z216XY9Z72X2Y6Z224XY8Z66X2Y4Z260XY6Z48X2Y3Z2108X2Y2Z284XY4Z120XY3Z144XY2Z144XYZ5*X^4*Y^8*Z^4+2*X^2*Y^12*Z^2+20*X^4*Y^6*Z^4+8*X*Y^12*Z+8*X^2*Y^9*Z^2+20*X^4*Y^4*Z^4+26*X^2*Y^8*Z^2+16*X*Y^9*Z+72*X^2*Y^6*Z^2+24*X*Y^8*Z+66*X^2*Y^4*Z^2+60*X*Y^6*Z+48*X^2*Y^3*Z^2+108*X^2*Y^2*Z^2+84*X*Y^4*Z+120*X*Y^3*Z+144*X*Y^2*Z+144*X*Y*Z

Algorithm definition

The algorithm ⟨4×12×30:975⟩ is the (Kronecker) tensor product of ⟨2×3×5:25⟩ with ⟨2×4×6:39⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table