Description of fast matrix multiplication algorithm: ⟨4×12×28:900⟩

Algorithm type

4X4Y8Z4+4X2Y12Z2+4X4Y6Z4+16XY12Z+4X2Y9Z2+36X4Y4Z4+16X2Y8Z2+24XY9Z+60X2Y6Z2+20X2Y4Z2+8XY6Z+12X2Y3Z2+196X2Y2Z2+48XY4Z+160XY3Z+24XY2Z+264XYZ4X4Y8Z44X2Y12Z24X4Y6Z416XY12Z4X2Y9Z236X4Y4Z416X2Y8Z224XY9Z60X2Y6Z220X2Y4Z28XY6Z12X2Y3Z2196X2Y2Z248XY4Z160XY3Z24XY2Z264XYZ4*X^4*Y^8*Z^4+4*X^2*Y^12*Z^2+4*X^4*Y^6*Z^4+16*X*Y^12*Z+4*X^2*Y^9*Z^2+36*X^4*Y^4*Z^4+16*X^2*Y^8*Z^2+24*X*Y^9*Z+60*X^2*Y^6*Z^2+20*X^2*Y^4*Z^2+8*X*Y^6*Z+12*X^2*Y^3*Z^2+196*X^2*Y^2*Z^2+48*X*Y^4*Z+160*X*Y^3*Z+24*X*Y^2*Z+264*X*Y*Z

Algorithm definition

The algorithm ⟨4×12×28:900⟩ is the (Kronecker) tensor product of ⟨2×3×4:20⟩ with ⟨2×4×7:45⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table