Description of fast matrix multiplication algorithm: ⟨4×11×32:980⟩

Algorithm type

30X4Y4Z4+6X4Y3Z4+6X3Y4Z4+8XY9Z+6X3Y3Z4+36X2Y6Z2+8XY8Z+22X2Y5Z2+52X2Y4Z2+40XY6Z+6XY5Z2+4X2Y3Z2+8XY5Z+194X2Y2Z2+12X2YZ2+100XY3Z+6XY2Z2+192XY2Z+244XYZ30X4Y4Z46X4Y3Z46X3Y4Z48XY9Z6X3Y3Z436X2Y6Z28XY8Z22X2Y5Z252X2Y4Z240XY6Z6XY5Z24X2Y3Z28XY5Z194X2Y2Z212X2YZ2100XY3Z6XY2Z2192XY2Z244XYZ30*X^4*Y^4*Z^4+6*X^4*Y^3*Z^4+6*X^3*Y^4*Z^4+8*X*Y^9*Z+6*X^3*Y^3*Z^4+36*X^2*Y^6*Z^2+8*X*Y^8*Z+22*X^2*Y^5*Z^2+52*X^2*Y^4*Z^2+40*X*Y^6*Z+6*X*Y^5*Z^2+4*X^2*Y^3*Z^2+8*X*Y^5*Z+194*X^2*Y^2*Z^2+12*X^2*Y*Z^2+100*X*Y^3*Z+6*X*Y^2*Z^2+192*X*Y^2*Z+244*X*Y*Z

Algorithm definition

The algorithm ⟨4×11×32:980⟩ is the (Kronecker) tensor product of ⟨1×1×2:2⟩ with ⟨4×11×16:490⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table