Description of fast matrix multiplication algorithm: ⟨4×11×24:732⟩

Algorithm type

24X4Y4Z4+4X4Y3Z4+8X3Y3Z4+4X2Y6Z2+8X2Y5Z2+84X2Y4Z2+24XY6Z+20X2Y3Z2+8XY5Z+116X2Y2Z2+48XY4Z+8XY3Z2+8X2YZ2+48XY3Z+184XY2Z+136XYZ24X4Y4Z44X4Y3Z48X3Y3Z44X2Y6Z28X2Y5Z284X2Y4Z224XY6Z20X2Y3Z28XY5Z116X2Y2Z248XY4Z8XY3Z28X2YZ248XY3Z184XY2Z136XYZ24*X^4*Y^4*Z^4+4*X^4*Y^3*Z^4+8*X^3*Y^3*Z^4+4*X^2*Y^6*Z^2+8*X^2*Y^5*Z^2+84*X^2*Y^4*Z^2+24*X*Y^6*Z+20*X^2*Y^3*Z^2+8*X*Y^5*Z+116*X^2*Y^2*Z^2+48*X*Y^4*Z+8*X*Y^3*Z^2+8*X^2*Y*Z^2+48*X*Y^3*Z+184*X*Y^2*Z+136*X*Y*Z

Algorithm definition

The algorithm ⟨4×11×24:732⟩ is the (Kronecker) tensor product of ⟨1×1×2:2⟩ with ⟨4×11×12:366⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table