Description of fast matrix multiplication algorithm: ⟨4×10×30:826⟩

Algorithm type

3X4Y10Z4+6X4Y8Z4+2X4Y6Z4+13X2Y10Z2+21X4Y4Z4+13X2Y8Z2+X4Y2Z4+12X2Y6Z2+18X2Y5Z2+50X2Y4Z2+2X2Y2Z4+12X2Y3Z2+78XY5Z+157X2Y2Z2+78XY4Z+6X2YZ2+72XY3Z+84XY2Z+12XYZ2+186XYZ3X4Y10Z46X4Y8Z42X4Y6Z413X2Y10Z221X4Y4Z413X2Y8Z2X4Y2Z412X2Y6Z218X2Y5Z250X2Y4Z22X2Y2Z412X2Y3Z278XY5Z157X2Y2Z278XY4Z6X2YZ272XY3Z84XY2Z12XYZ2186XYZ3*X^4*Y^10*Z^4+6*X^4*Y^8*Z^4+2*X^4*Y^6*Z^4+13*X^2*Y^10*Z^2+21*X^4*Y^4*Z^4+13*X^2*Y^8*Z^2+X^4*Y^2*Z^4+12*X^2*Y^6*Z^2+18*X^2*Y^5*Z^2+50*X^2*Y^4*Z^2+2*X^2*Y^2*Z^4+12*X^2*Y^3*Z^2+78*X*Y^5*Z+157*X^2*Y^2*Z^2+78*X*Y^4*Z+6*X^2*Y*Z^2+72*X*Y^3*Z+84*X*Y^2*Z+12*X*Y*Z^2+186*X*Y*Z

Algorithm definition

The algorithm ⟨4×10×30:826⟩ is the (Kronecker) tensor product of ⟨2×5×15:118⟩ with ⟨2×2×2:7⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table