Description of fast matrix multiplication algorithm: ⟨4×10×28:770⟩

Algorithm type

4X4Y10Z4+4X4Y8Z4+2X4Y6Z4+12X2Y10Z2+20X4Y4Z4+14X2Y8Z2+2X4Y2Z4+8X2Y6Z2+24X2Y5Z2+36X2Y4Z2+4X2Y2Z4+12X2Y3Z2+72XY5Z+148X2Y2Z2+84XY4Z+12X2YZ2+48XY3Z+72XY2Z+24XYZ2+168XYZ4X4Y10Z44X4Y8Z42X4Y6Z412X2Y10Z220X4Y4Z414X2Y8Z22X4Y2Z48X2Y6Z224X2Y5Z236X2Y4Z24X2Y2Z412X2Y3Z272XY5Z148X2Y2Z284XY4Z12X2YZ248XY3Z72XY2Z24XYZ2168XYZ4*X^4*Y^10*Z^4+4*X^4*Y^8*Z^4+2*X^4*Y^6*Z^4+12*X^2*Y^10*Z^2+20*X^4*Y^4*Z^4+14*X^2*Y^8*Z^2+2*X^4*Y^2*Z^4+8*X^2*Y^6*Z^2+24*X^2*Y^5*Z^2+36*X^2*Y^4*Z^2+4*X^2*Y^2*Z^4+12*X^2*Y^3*Z^2+72*X*Y^5*Z+148*X^2*Y^2*Z^2+84*X*Y^4*Z+12*X^2*Y*Z^2+48*X*Y^3*Z+72*X*Y^2*Z+24*X*Y*Z^2+168*X*Y*Z

Algorithm definition

The algorithm ⟨4×10×28:770⟩ is the (Kronecker) tensor product of ⟨2×5×14:110⟩ with ⟨2×2×2:7⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table