Description of fast matrix multiplication algorithm: ⟨4×10×26:714⟩

Algorithm type

2X4Y10Z4+4X4Y8Z4+X4Y6Z4+6X2Y10Z2+21X4Y4Z4+11X2Y8Z2+X4Y2Z4+12X2Y6Z2+12X2Y5Z2+34X2Y4Z2+2X2Y2Z4+6X2Y3Z2+36XY5Z+158X2Y2Z2+66XY4Z+6X2YZ2+72XY3Z+60XY2Z+12XYZ2+192XYZ2X4Y10Z44X4Y8Z4X4Y6Z46X2Y10Z221X4Y4Z411X2Y8Z2X4Y2Z412X2Y6Z212X2Y5Z234X2Y4Z22X2Y2Z46X2Y3Z236XY5Z158X2Y2Z266XY4Z6X2YZ272XY3Z60XY2Z12XYZ2192XYZ2*X^4*Y^10*Z^4+4*X^4*Y^8*Z^4+X^4*Y^6*Z^4+6*X^2*Y^10*Z^2+21*X^4*Y^4*Z^4+11*X^2*Y^8*Z^2+X^4*Y^2*Z^4+12*X^2*Y^6*Z^2+12*X^2*Y^5*Z^2+34*X^2*Y^4*Z^2+2*X^2*Y^2*Z^4+6*X^2*Y^3*Z^2+36*X*Y^5*Z+158*X^2*Y^2*Z^2+66*X*Y^4*Z+6*X^2*Y*Z^2+72*X*Y^3*Z+60*X*Y^2*Z+12*X*Y*Z^2+192*X*Y*Z

Algorithm definition

The algorithm ⟨4×10×26:714⟩ is the (Kronecker) tensor product of ⟨2×5×13:102⟩ with ⟨2×2×2:7⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table