Description of fast matrix multiplication algorithm: ⟨3×5×32:360⟩

Algorithm type

4X3YZ3+12X2Y3Z2+108X2Y2Z2+4XY2Z3+4X3YZ+20XY3Z+28XY2Z2+40XYZ3+4X2YZ+64XY2Z+56XYZ2+16XYZ4X3YZ312X2Y3Z2108X2Y2Z24XY2Z34X3YZ20XY3Z28XY2Z240XYZ34X2YZ64XY2Z56XYZ216XYZ4*X^3*Y*Z^3+12*X^2*Y^3*Z^2+108*X^2*Y^2*Z^2+4*X*Y^2*Z^3+4*X^3*Y*Z+20*X*Y^3*Z+28*X*Y^2*Z^2+40*X*Y*Z^3+4*X^2*Y*Z+64*X*Y^2*Z+56*X*Y*Z^2+16*X*Y*Z

Algorithm definition

The algorithm ⟨3×5×32:360⟩ is the (Kronecker) tensor product of ⟨1×1×2:2⟩ with ⟨3×5×16:180⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table