Description of fast matrix multiplication algorithm: ⟨3×5×26:294⟩

Algorithm type

8X2Y3Z2+4X3YZ2+84X2Y2Z2+4X2YZ3+8XY4Z+6XY2Z3+16X3YZ+8X2Y2Z+18XY3Z+12XY2Z2+22XYZ3+20X2YZ+44XY2Z+24XYZ2+16XYZ8X2Y3Z24X3YZ284X2Y2Z24X2YZ38XY4Z6XY2Z316X3YZ8X2Y2Z18XY3Z12XY2Z222XYZ320X2YZ44XY2Z24XYZ216XYZ8*X^2*Y^3*Z^2+4*X^3*Y*Z^2+84*X^2*Y^2*Z^2+4*X^2*Y*Z^3+8*X*Y^4*Z+6*X*Y^2*Z^3+16*X^3*Y*Z+8*X^2*Y^2*Z+18*X*Y^3*Z+12*X*Y^2*Z^2+22*X*Y*Z^3+20*X^2*Y*Z+44*X*Y^2*Z+24*X*Y*Z^2+16*X*Y*Z

Algorithm definition

The algorithm ⟨3×5×26:294⟩ is the (Kronecker) tensor product of ⟨3×5×13:147⟩ with ⟨1×1×2:2⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table