Description of fast matrix multiplication algorithm: ⟨3×5×26:296⟩

Algorithm type

4X2Y4Z2+12X2Y3Z2+4X3YZ2+76X2Y2Z2+4X2YZ3+10XY4Z+2XY3Z2+6XY2Z3+12X3YZ+8X2Y2Z+24XY3Z+8XY2Z2+12XYZ3+16X2YZ+34XY2Z+18XYZ2+46XYZ4X2Y4Z212X2Y3Z24X3YZ276X2Y2Z24X2YZ310XY4Z2XY3Z26XY2Z312X3YZ8X2Y2Z24XY3Z8XY2Z212XYZ316X2YZ34XY2Z18XYZ246XYZ4*X^2*Y^4*Z^2+12*X^2*Y^3*Z^2+4*X^3*Y*Z^2+76*X^2*Y^2*Z^2+4*X^2*Y*Z^3+10*X*Y^4*Z+2*X*Y^3*Z^2+6*X*Y^2*Z^3+12*X^3*Y*Z+8*X^2*Y^2*Z+24*X*Y^3*Z+8*X*Y^2*Z^2+12*X*Y*Z^3+16*X^2*Y*Z+34*X*Y^2*Z+18*X*Y*Z^2+46*X*Y*Z

Algorithm definition

The algorithm ⟨3×5×26:296⟩ is the (Kronecker) tensor product of ⟨3×5×13:148⟩ with ⟨1×1×2:2⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table