Description of fast matrix multiplication algorithm: ⟨3×5×22:256⟩

Algorithm type

32X2Y3Z3+48XY3Z3+2X3Y2Z+46X2Y2Z2+4XY4Z+2XY2Z3+10X3YZ+4X2Y2Z+2XY3Z+4XY2Z2+10XYZ3+2X2YZ+26XY2Z+26XYZ2+38XYZ32X2Y3Z348XY3Z32X3Y2Z46X2Y2Z24XY4Z2XY2Z310X3YZ4X2Y2Z2XY3Z4XY2Z210XYZ32X2YZ26XY2Z26XYZ238XYZ32*X^2*Y^3*Z^3+48*X*Y^3*Z^3+2*X^3*Y^2*Z+46*X^2*Y^2*Z^2+4*X*Y^4*Z+2*X*Y^2*Z^3+10*X^3*Y*Z+4*X^2*Y^2*Z+2*X*Y^3*Z+4*X*Y^2*Z^2+10*X*Y*Z^3+2*X^2*Y*Z+26*X*Y^2*Z+26*X*Y*Z^2+38*X*Y*Z

Algorithm definition

The algorithm ⟨3×5×22:256⟩ is the (Kronecker) tensor product of ⟨3×5×11:128⟩ with ⟨1×1×2:2⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table