Description of fast matrix multiplication algorithm: ⟨3×3×19:129⟩

Algorithm type

48X2Y3Z3+72XY3Z3+9XYZ48X2Y3Z372XY3Z39XYZ48*X^2*Y^3*Z^3+72*X*Y^3*Z^3+9*X*Y*Z

Algorithm definition

The algorithm ⟨3×3×19:129⟩ could be constructed using the following decomposition:

⟨3×3×19:129⟩ = ⟨3×3×1:9⟩ + ⟨3×3×18:120⟩.

This decomposition is defined by the following equality:

TraceMulA_1_1A_1_2A_1_3A_2_1A_2_2A_2_3A_3_1A_3_2A_3_3B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_1_15B_1_16B_1_17B_1_18B_1_19B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_2_15B_2_16B_2_17B_2_18B_2_19B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_3_15B_3_16B_3_17B_3_18B_3_19C_1_1C_1_2C_1_3C_2_1C_2_2C_2_3C_3_1C_3_2C_3_3C_4_1C_4_2C_4_3C_5_1C_5_2C_5_3C_6_1C_6_2C_6_3C_7_1C_7_2C_7_3C_8_1C_8_2C_8_3C_9_1C_9_2C_9_3C_10_1C_10_2C_10_3C_11_1C_11_2C_11_3C_12_1C_12_2C_12_3C_13_1C_13_2C_13_3C_14_1C_14_2C_14_3C_15_1C_15_2C_15_3C_16_1C_16_2C_16_3C_17_1C_17_2C_17_3C_18_1C_18_2C_18_3C_19_1C_19_2C_19_3=TraceMulA_1_1A_1_2A_1_3A_2_1A_2_2A_2_3A_3_1A_3_2A_3_3B_1_1B_2_1B_3_1C_1_1C_1_2C_1_3+TraceMulA_1_1A_1_2A_1_3A_2_1A_2_2A_2_3A_3_1A_3_2A_3_3B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_1_15B_1_16B_1_17B_1_18B_1_19B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_2_15B_2_16B_2_17B_2_18B_2_19B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_3_15B_3_16B_3_17B_3_18B_3_19C_2_1C_2_2C_2_3C_3_1C_3_2C_3_3C_4_1C_4_2C_4_3C_5_1C_5_2C_5_3C_6_1C_6_2C_6_3C_7_1C_7_2C_7_3C_8_1C_8_2C_8_3C_9_1C_9_2C_9_3C_10_1C_10_2C_10_3C_11_1C_11_2C_11_3C_12_1C_12_2C_12_3C_13_1C_13_2C_13_3C_14_1C_14_2C_14_3C_15_1C_15_2C_15_3C_16_1C_16_2C_16_3C_17_1C_17_2C_17_3C_18_1C_18_2C_18_3C_19_1C_19_2C_19_3TraceMulA_1_1A_1_2A_1_3A_2_1A_2_2A_2_3A_3_1A_3_2A_3_3B_1_1B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_1_15B_1_16B_1_17B_1_18B_1_19B_2_1B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_2_15B_2_16B_2_17B_2_18B_2_19B_3_1B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_3_15B_3_16B_3_17B_3_18B_3_19C_1_1C_1_2C_1_3C_2_1C_2_2C_2_3C_3_1C_3_2C_3_3C_4_1C_4_2C_4_3C_5_1C_5_2C_5_3C_6_1C_6_2C_6_3C_7_1C_7_2C_7_3C_8_1C_8_2C_8_3C_9_1C_9_2C_9_3C_10_1C_10_2C_10_3C_11_1C_11_2C_11_3C_12_1C_12_2C_12_3C_13_1C_13_2C_13_3C_14_1C_14_2C_14_3C_15_1C_15_2C_15_3C_16_1C_16_2C_16_3C_17_1C_17_2C_17_3C_18_1C_18_2C_18_3C_19_1C_19_2C_19_3TraceMulA_1_1A_1_2A_1_3A_2_1A_2_2A_2_3A_3_1A_3_2A_3_3B_1_1B_2_1B_3_1C_1_1C_1_2C_1_3TraceMulA_1_1A_1_2A_1_3A_2_1A_2_2A_2_3A_3_1A_3_2A_3_3B_1_2B_1_3B_1_4B_1_5B_1_6B_1_7B_1_8B_1_9B_1_10B_1_11B_1_12B_1_13B_1_14B_1_15B_1_16B_1_17B_1_18B_1_19B_2_2B_2_3B_2_4B_2_5B_2_6B_2_7B_2_8B_2_9B_2_10B_2_11B_2_12B_2_13B_2_14B_2_15B_2_16B_2_17B_2_18B_2_19B_3_2B_3_3B_3_4B_3_5B_3_6B_3_7B_3_8B_3_9B_3_10B_3_11B_3_12B_3_13B_3_14B_3_15B_3_16B_3_17B_3_18B_3_19C_2_1C_2_2C_2_3C_3_1C_3_2C_3_3C_4_1C_4_2C_4_3C_5_1C_5_2C_5_3C_6_1C_6_2C_6_3C_7_1C_7_2C_7_3C_8_1C_8_2C_8_3C_9_1C_9_2C_9_3C_10_1C_10_2C_10_3C_11_1C_11_2C_11_3C_12_1C_12_2C_12_3C_13_1C_13_2C_13_3C_14_1C_14_2C_14_3C_15_1C_15_2C_15_3C_16_1C_16_2C_16_3C_17_1C_17_2C_17_3C_18_1C_18_2C_18_3C_19_1C_19_2C_19_3Trace(Mul(Matrix(3, 3, [[A_1_1,A_1_2,A_1_3],[A_2_1,A_2_2,A_2_3],[A_3_1,A_3_2,A_3_3]]),Matrix(3, 19, [[B_1_1,B_1_2,B_1_3,B_1_4,B_1_5,B_1_6,B_1_7,B_1_8,B_1_9,B_1_10,B_1_11,B_1_12,B_1_13,B_1_14,B_1_15,B_1_16,B_1_17,B_1_18,B_1_19],[B_2_1,B_2_2,B_2_3,B_2_4,B_2_5,B_2_6,B_2_7,B_2_8,B_2_9,B_2_10,B_2_11,B_2_12,B_2_13,B_2_14,B_2_15,B_2_16,B_2_17,B_2_18,B_2_19],[B_3_1,B_3_2,B_3_3,B_3_4,B_3_5,B_3_6,B_3_7,B_3_8,B_3_9,B_3_10,B_3_11,B_3_12,B_3_13,B_3_14,B_3_15,B_3_16,B_3_17,B_3_18,B_3_19]]),Matrix(19, 3, [[C_1_1,C_1_2,C_1_3],[C_2_1,C_2_2,C_2_3],[C_3_1,C_3_2,C_3_3],[C_4_1,C_4_2,C_4_3],[C_5_1,C_5_2,C_5_3],[C_6_1,C_6_2,C_6_3],[C_7_1,C_7_2,C_7_3],[C_8_1,C_8_2,C_8_3],[C_9_1,C_9_2,C_9_3],[C_10_1,C_10_2,C_10_3],[C_11_1,C_11_2,C_11_3],[C_12_1,C_12_2,C_12_3],[C_13_1,C_13_2,C_13_3],[C_14_1,C_14_2,C_14_3],[C_15_1,C_15_2,C_15_3],[C_16_1,C_16_2,C_16_3],[C_17_1,C_17_2,C_17_3],[C_18_1,C_18_2,C_18_3],[C_19_1,C_19_2,C_19_3]]))) = Trace(Mul(Matrix(3, 3, [[A_1_1,A_1_2,A_1_3],[A_2_1,A_2_2,A_2_3],[A_3_1,A_3_2,A_3_3]]),Matrix(3, 1, [[B_1_1],[B_2_1],[B_3_1]]),Matrix(1, 3, [[C_1_1,C_1_2,C_1_3]])))+Trace(Mul(Matrix(3, 3, [[A_1_1,A_1_2,A_1_3],[A_2_1,A_2_2,A_2_3],[A_3_1,A_3_2,A_3_3]]),Matrix(3, 18, [[B_1_2,B_1_3,B_1_4,B_1_5,B_1_6,B_1_7,B_1_8,B_1_9,B_1_10,B_1_11,B_1_12,B_1_13,B_1_14,B_1_15,B_1_16,B_1_17,B_1_18,B_1_19],[B_2_2,B_2_3,B_2_4,B_2_5,B_2_6,B_2_7,B_2_8,B_2_9,B_2_10,B_2_11,B_2_12,B_2_13,B_2_14,B_2_15,B_2_16,B_2_17,B_2_18,B_2_19],[B_3_2,B_3_3,B_3_4,B_3_5,B_3_6,B_3_7,B_3_8,B_3_9,B_3_10,B_3_11,B_3_12,B_3_13,B_3_14,B_3_15,B_3_16,B_3_17,B_3_18,B_3_19]]),Matrix(18, 3, [[C_2_1,C_2_2,C_2_3],[C_3_1,C_3_2,C_3_3],[C_4_1,C_4_2,C_4_3],[C_5_1,C_5_2,C_5_3],[C_6_1,C_6_2,C_6_3],[C_7_1,C_7_2,C_7_3],[C_8_1,C_8_2,C_8_3],[C_9_1,C_9_2,C_9_3],[C_10_1,C_10_2,C_10_3],[C_11_1,C_11_2,C_11_3],[C_12_1,C_12_2,C_12_3],[C_13_1,C_13_2,C_13_3],[C_14_1,C_14_2,C_14_3],[C_15_1,C_15_2,C_15_3],[C_16_1,C_16_2,C_16_3],[C_17_1,C_17_2,C_17_3],[C_18_1,C_18_2,C_18_3],[C_19_1,C_19_2,C_19_3]])))

N.B.: for any matrices A, B and C such that the expression Tr(Mul(A,B,C)) is defined, one can construct several trilinear homogeneous polynomials P(A,B,C) such that P(A,B,C)=Tr(Mul(A,B,C)) (P(A,B,C) variables are A,B and C's coefficients). Each trilinear P expression encodes a matrix multiplication algorithm: the coefficient in C_i_j of P(A,B,C) is the (i,j)-th entry of the matrix product Mul(A,B)=Transpose(C).

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table