# Algorithm type

$10X{Y}^{12}Z+3{X}^{2}{Y}^{9}{Z}^{2}+18{X}^{3}{Y}^{6}{Z}^{3}+30{X}^{2}{Y}^{8}{Z}^{2}+3X{Y}^{9}{Z}^{2}+6X{Y}^{9}Z+84{X}^{3}{Y}^{4}{Z}^{3}+44{X}^{2}{Y}^{6}{Z}^{2}+40X{Y}^{8}Z+6{X}^{2}{Y}^{6}Z+14X{Y}^{6}{Z}^{2}+74{X}^{2}{Y}^{4}{Z}^{2}+36X{Y}^{6}Z+28{X}^{2}{Y}^{4}Z+15{X}^{2}{Y}^{3}{Z}^{2}+16X{Y}^{5}Z+3{X}^{2}{Y}^{3}Z+154{X}^{2}{Y}^{2}{Z}^{2}+134X{Y}^{4}Z+9X{Y}^{3}{Z}^{2}+14{X}^{2}{Y}^{2}Z+109X{Y}^{3}Z+42X{Y}^{2}{Z}^{2}+252X{Y}^{2}Z+348XYZ$

# Algorithm definition

The algorithm ⟨3×24×28:1492⟩ could be constructed using the following decomposition:

$\mathrm{⟨3×24×28:1492⟩}=\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨1×4×4:16⟩}+\mathrm{⟨1×4×4:16⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨1×4×4:16⟩}+\mathrm{⟨1×4×4:16⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨1×4×4:16⟩}+\mathrm{⟨1×4×4:16⟩}+\mathrm{⟨1×4×4:16⟩}+\mathrm{⟨1×4×4:16⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨1×4×4:16⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨1×4×4:16⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨1×4×4:16⟩}+\mathrm{⟨1×4×4:16⟩}+\mathrm{⟨1×4×4:16⟩}+\mathrm{⟨1×4×4:16⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨1×4×4:16⟩}+\mathrm{⟨1×4×4:16⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨1×4×4:16⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨1×4×4:16⟩}+\mathrm{⟨1×4×4:16⟩}+\mathrm{⟨1×4×4:16⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨1×4×4:16⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨1×4×4:16⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨1×4×4:16⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨2×4×4:26⟩}+\mathrm{⟨1×4×4:16⟩}+\mathrm{⟨1×4×4:16⟩}+\mathrm{⟨2×4×4:26⟩.}$

This decomposition is defined by the following equality:

$\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccccccccccccccccccccccc}\mathrm{A_1_1}& \mathrm{A_1_2}& \mathrm{A_1_3}& \mathrm{A_1_4}& \mathrm{A_1_5}& \mathrm{A_1_6}& \mathrm{A_1_7}& \mathrm{A_1_8}& \mathrm{A_1_9}& \mathrm{A_1_10}& \mathrm{A_1_11}& \mathrm{A_1_12}& \mathrm{A_1_13}& \mathrm{A_1_14}& \mathrm{A_1_15}& \mathrm{A_1_16}& \mathrm{A_1_17}& \mathrm{A_1_18}& \mathrm{A_1_19}& \mathrm{A_1_20}& \mathrm{A_1_21}& \mathrm{A_1_22}& \mathrm{A_1_23}& \mathrm{A_1_24}\\ \mathrm{A_2_1}& \mathrm{A_2_2}& \mathrm{A_2_3}& \mathrm{A_2_4}& \mathrm{A_2_5}& \mathrm{A_2_6}& \mathrm{A_2_7}& \mathrm{A_2_8}& \mathrm{A_2_9}& \mathrm{A_2_10}& \mathrm{A_2_11}& \mathrm{A_2_12}& \mathrm{A_2_13}& \mathrm{A_2_14}& \mathrm{A_2_15}& \mathrm{A_2_16}& \mathrm{A_2_17}& \mathrm{A_2_18}& \mathrm{A_2_19}& \mathrm{A_2_20}& \mathrm{A_2_21}& \mathrm{A_2_22}& \mathrm{A_2_23}& \mathrm{A_2_24}\\ \mathrm{A_3_1}& \mathrm{A_3_2}& \mathrm{A_3_3}& \mathrm{A_3_4}& \mathrm{A_3_5}& \mathrm{A_3_6}& \mathrm{A_3_7}& \mathrm{A_3_8}& \mathrm{A_3_9}& \mathrm{A_3_10}& \mathrm{A_3_11}& \mathrm{A_3_12}& \mathrm{A_3_13}& \mathrm{A_3_14}& \mathrm{A_3_15}& \mathrm{A_3_16}& \mathrm{A_3_17}& \mathrm{A_3_18}& \mathrm{A_3_19}& \mathrm{A_3_20}& \mathrm{A_3_21}& \mathrm{A_3_22}& \mathrm{A_3_23}& \mathrm{A_3_24}\end{array}\right),\left(\begin{array}{cccccccccccccccccccccccccccc}\mathrm{B_1_1}& \mathrm{B_1_2}& \mathrm{B_1_3}& \mathrm{B_1_4}& \mathrm{B_1_5}& \mathrm{B_1_6}& \mathrm{B_1_7}& \mathrm{B_1_8}& \mathrm{B_1_9}& \mathrm{B_1_10}& \mathrm{B_1_11}& \mathrm{B_1_12}& \mathrm{B_1_13}& \mathrm{B_1_14}& \mathrm{B_1_15}& \mathrm{B_1_16}& \mathrm{B_1_17}& \mathrm{B_1_18}& \mathrm{B_1_19}& \mathrm{B_1_20}& \mathrm{B_1_21}& \mathrm{B_1_22}& \mathrm{B_1_23}& \mathrm{B_1_24}& \mathrm{B_1_25}& \mathrm{B_1_26}& \mathrm{B_1_27}& \mathrm{B_1_28}\\ \mathrm{B_2_1}& \mathrm{B_2_2}& \mathrm{B_2_3}& \mathrm{B_2_4}& \mathrm{B_2_5}& \mathrm{B_2_6}& \mathrm{B_2_7}& \mathrm{B_2_8}& \mathrm{B_2_9}& \mathrm{B_2_10}& \mathrm{B_2_11}& \mathrm{B_2_12}& \mathrm{B_2_13}& \mathrm{B_2_14}& \mathrm{B_2_15}& \mathrm{B_2_16}& \mathrm{B_2_17}& \mathrm{B_2_18}& \mathrm{B_2_19}& \mathrm{B_2_20}& \mathrm{B_2_21}& \mathrm{B_2_22}& \mathrm{B_2_23}& \mathrm{B_2_24}& \mathrm{B_2_25}& \mathrm{B_2_26}& \mathrm{B_2_27}& \mathrm{B_2_28}\\ \mathrm{B_3_1}& \mathrm{B_3_2}& \mathrm{B_3_3}& \mathrm{B_3_4}& \mathrm{B_3_5}& \mathrm{B_3_6}& \mathrm{B_3_7}& \mathrm{B_3_8}& \mathrm{B_3_9}& \mathrm{B_3_10}& \mathrm{B_3_11}& \mathrm{B_3_12}& \mathrm{B_3_13}& \mathrm{B_3_14}& \mathrm{B_3_15}& \mathrm{B_3_16}& \mathrm{B_3_17}& \mathrm{B_3_18}& \mathrm{B_3_19}& \mathrm{B_3_20}& \mathrm{B_3_21}& \mathrm{B_3_22}& \mathrm{B_3_23}& \mathrm{B_3_24}& \mathrm{B_3_25}& \mathrm{B_3_26}& \mathrm{B_3_27}& \mathrm{B_3_28}\\ \mathrm{B_4_1}& \mathrm{B_4_2}& \mathrm{B_4_3}& \mathrm{B_4_4}& \mathrm{B_4_5}& \mathrm{B_4_6}& \mathrm{B_4_7}& \mathrm{B_4_8}& \mathrm{B_4_9}& \mathrm{B_4_10}& \mathrm{B_4_11}& \mathrm{B_4_12}& \mathrm{B_4_13}& \mathrm{B_4_14}& \mathrm{B_4_15}& \mathrm{B_4_16}& \mathrm{B_4_17}& \mathrm{B_4_18}& \mathrm{B_4_19}& \mathrm{B_4_20}& \mathrm{B_4_21}& \mathrm{B_4_22}& \mathrm{B_4_23}& \mathrm{B_4_24}& \mathrm{B_4_25}& \mathrm{B_4_26}& \mathrm{B_4_27}& \mathrm{B_4_28}\\ \mathrm{B_5_1}& \mathrm{B_5_2}& \mathrm{B_5_3}& \mathrm{B_5_4}& \mathrm{B_5_5}& \mathrm{B_5_6}& \mathrm{B_5_7}& \mathrm{B_5_8}& \mathrm{B_5_9}& \mathrm{B_5_10}& \mathrm{B_5_11}& \mathrm{B_5_12}& \mathrm{B_5_13}& \mathrm{B_5_14}& \mathrm{B_5_15}& \mathrm{B_5_16}& \mathrm{B_5_17}& \mathrm{B_5_18}& \mathrm{B_5_19}& \mathrm{B_5_20}& \mathrm{B_5_21}& \mathrm{B_5_22}& \mathrm{B_5_23}& \mathrm{B_5_24}& \mathrm{B_5_25}& \mathrm{B_5_26}& \mathrm{B_5_27}& \mathrm{B_5_28}\\ \mathrm{B_6_1}& \mathrm{B_6_2}& \mathrm{B_6_3}& \mathrm{B_6_4}& \mathrm{B_6_5}& \mathrm{B_6_6}& \mathrm{B_6_7}& \mathrm{B_6_8}& \mathrm{B_6_9}& \mathrm{B_6_10}& \mathrm{B_6_11}& \mathrm{B_6_12}& \mathrm{B_6_13}& \mathrm{B_6_14}& \mathrm{B_6_15}& \mathrm{B_6_16}& \mathrm{B_6_17}& \mathrm{B_6_18}& \mathrm{B_6_19}& \mathrm{B_6_20}& \mathrm{B_6_21}& \mathrm{B_6_22}& \mathrm{B_6_23}& \mathrm{B_6_24}& \mathrm{B_6_25}& \mathrm{B_6_26}& \mathrm{B_6_27}& \mathrm{B_6_28}\\ \mathrm{B_7_1}& \mathrm{B_7_2}& \mathrm{B_7_3}& \mathrm{B_7_4}& \mathrm{B_7_5}& \mathrm{B_7_6}& \mathrm{B_7_7}& \mathrm{B_7_8}& \mathrm{B_7_9}& \mathrm{B_7_10}& \mathrm{B_7_11}& \mathrm{B_7_12}& \mathrm{B_7_13}& \mathrm{B_7_14}& \mathrm{B_7_15}& \mathrm{B_7_16}& \mathrm{B_7_17}& \mathrm{B_7_18}& \mathrm{B_7_19}& \mathrm{B_7_20}& \mathrm{B_7_21}& \mathrm{B_7_22}& \mathrm{B_7_23}& \mathrm{B_7_24}& \mathrm{B_7_25}& \mathrm{B_7_26}& \mathrm{B_7_27}& \mathrm{B_7_28}\\ \mathrm{B_8_1}& \mathrm{B_8_2}& \mathrm{B_8_3}& \mathrm{B_8_4}& \mathrm{B_8_5}& \mathrm{B_8_6}& \mathrm{B_8_7}& \mathrm{B_8_8}& \mathrm{B_8_9}& \mathrm{B_8_10}& \mathrm{B_8_11}& \mathrm{B_8_12}& \mathrm{B_8_13}& \mathrm{B_8_14}& \mathrm{B_8_15}& \mathrm{B_8_16}& \mathrm{B_8_17}& \mathrm{B_8_18}& \mathrm{B_8_19}& \mathrm{B_8_20}& \mathrm{B_8_21}& \mathrm{B_8_22}& \mathrm{B_8_23}& \mathrm{B_8_24}& \mathrm{B_8_25}& \mathrm{B_8_26}& \mathrm{B_8_27}& \mathrm{B_8_28}\\ \mathrm{B_9_1}& \mathrm{B_9_2}& \mathrm{B_9_3}& \mathrm{B_9_4}& \mathrm{B_9_5}& \mathrm{B_9_6}& \mathrm{B_9_7}& \mathrm{B_9_8}& \mathrm{B_9_9}& \mathrm{B_9_10}& \mathrm{B_9_11}& \mathrm{B_9_12}& \mathrm{B_9_13}& \mathrm{B_9_14}& \mathrm{B_9_15}& \mathrm{B_9_16}& \mathrm{B_9_17}& \mathrm{B_9_18}& \mathrm{B_9_19}& \mathrm{B_9_20}& \mathrm{B_9_21}& \mathrm{B_9_22}& \mathrm{B_9_23}& \mathrm{B_9_24}& \mathrm{B_9_25}& \mathrm{B_9_26}& \mathrm{B_9_27}& \mathrm{B_9_28}\\ \mathrm{B_10_1}& \mathrm{B_10_2}& \mathrm{B_10_3}& \mathrm{B_10_4}& \mathrm{B_10_5}& \mathrm{B_10_6}& \mathrm{B_10_7}& \mathrm{B_10_8}& \mathrm{B_10_9}& \mathrm{B_10_10}& \mathrm{B_10_11}& \mathrm{B_10_12}& \mathrm{B_10_13}& \mathrm{B_10_14}& \mathrm{B_10_15}& \mathrm{B_10_16}& \mathrm{B_10_17}& \mathrm{B_10_18}& \mathrm{B_10_19}& \mathrm{B_10_20}& \mathrm{B_10_21}& \mathrm{B_10_22}& \mathrm{B_10_23}& \mathrm{B_10_24}& \mathrm{B_10_25}& \mathrm{B_10_26}& \mathrm{B_10_27}& \mathrm{B_10_28}\\ \mathrm{B_11_1}& \mathrm{B_11_2}& \mathrm{B_11_3}& \mathrm{B_11_4}& \mathrm{B_11_5}& \mathrm{B_11_6}& \mathrm{B_11_7}& \mathrm{B_11_8}& \mathrm{B_11_9}& \mathrm{B_11_10}& \mathrm{B_11_11}& \mathrm{B_11_12}& \mathrm{B_11_13}& \mathrm{B_11_14}& \mathrm{B_11_15}& \mathrm{B_11_16}& \mathrm{B_11_17}& \mathrm{B_11_18}& \mathrm{B_11_19}& \mathrm{B_11_20}& \mathrm{B_11_21}& \mathrm{B_11_22}& \mathrm{B_11_23}& \mathrm{B_11_24}& \mathrm{B_11_25}& \mathrm{B_11_26}& \mathrm{B_11_27}& \mathrm{B_11_28}\\ \mathrm{B_12_1}& \mathrm{B_12_2}& \mathrm{B_12_3}& \mathrm{B_12_4}& \mathrm{B_12_5}& \mathrm{B_12_6}& \mathrm{B_12_7}& \mathrm{B_12_8}& \mathrm{B_12_9}& \mathrm{B_12_10}& \mathrm{B_12_11}& \mathrm{B_12_12}& \mathrm{B_12_13}& \mathrm{B_12_14}& \mathrm{B_12_15}& \mathrm{B_12_16}& \mathrm{B_12_17}& \mathrm{B_12_18}& \mathrm{B_12_19}& \mathrm{B_12_20}& \mathrm{B_12_21}& \mathrm{B_12_22}& \mathrm{B_12_23}& \mathrm{B_12_24}& \mathrm{B_12_25}& \mathrm{B_12_26}& \mathrm{B_12_27}& \mathrm{B_12_28}\\ \mathrm{B_13_1}& \mathrm{B_13_2}& \mathrm{B_13_3}& \mathrm{B_13_4}& \mathrm{B_13_5}& \mathrm{B_13_6}& \mathrm{B_13_7}& \mathrm{B_13_8}& \mathrm{B_13_9}& \mathrm{B_13_10}& \mathrm{B_13_11}& \mathrm{B_13_12}& \mathrm{B_13_13}& \mathrm{B_13_14}& \mathrm{B_13_15}& \mathrm{B_13_16}& \mathrm{B_13_17}& \mathrm{B_13_18}& \mathrm{B_13_19}& \mathrm{B_13_20}& \mathrm{B_13_21}& \mathrm{B_13_22}& \mathrm{B_13_23}& \mathrm{B_13_24}& \mathrm{B_13_25}& \mathrm{B_13_26}& \mathrm{B_13_27}& \mathrm{B_13_28}\\ \mathrm{B_14_1}& \mathrm{B_14_2}& \mathrm{B_14_3}& \mathrm{B_14_4}& \mathrm{B_14_5}& \mathrm{B_14_6}& \mathrm{B_14_7}& \mathrm{B_14_8}& \mathrm{B_14_9}& \mathrm{B_14_10}& \mathrm{B_14_11}& \mathrm{B_14_12}& \mathrm{B_14_13}& \mathrm{B_14_14}& \mathrm{B_14_15}& \mathrm{B_14_16}& \mathrm{B_14_17}& \mathrm{B_14_18}& \mathrm{B_14_19}& \mathrm{B_14_20}& \mathrm{B_14_21}& \mathrm{B_14_22}& \mathrm{B_14_23}& \mathrm{B_14_24}& \mathrm{B_14_25}& \mathrm{B_14_26}& \mathrm{B_14_27}& \mathrm{B_14_28}\\ \mathrm{B_15_1}& \mathrm{B_15_2}& \mathrm{B_15_3}& \mathrm{B_15_4}& \mathrm{B_15_5}& \mathrm{B_15_6}& \mathrm{B_15_7}& \mathrm{B_15_8}& \mathrm{B_15_9}& \mathrm{B_15_10}& \mathrm{B_15_11}& \mathrm{B_15_12}& \mathrm{B_15_13}& \mathrm{B_15_14}& \mathrm{B_15_15}& \mathrm{B_15_16}& \mathrm{B_15_17}& \mathrm{B_15_18}& \mathrm{B_15_19}& \mathrm{B_15_20}& \mathrm{B_15_21}& \mathrm{B_15_22}& \mathrm{B_15_23}& \mathrm{B_15_24}& \mathrm{B_15_25}& \mathrm{B_15_26}& \mathrm{B_15_27}& \mathrm{B_15_28}\\ \mathrm{B_16_1}& \mathrm{B_16_2}& \mathrm{B_16_3}& \mathrm{B_16_4}& \mathrm{B_16_5}& \mathrm{B_16_6}& \mathrm{B_16_7}& \mathrm{B_16_8}& \mathrm{B_16_9}& \mathrm{B_16_10}& \mathrm{B_16_11}& \mathrm{B_16_12}& \mathrm{B_16_13}& \mathrm{B_16_14}& \mathrm{B_16_15}& \mathrm{B_16_16}& \mathrm{B_16_17}& \mathrm{B_16_18}& \mathrm{B_16_19}& \mathrm{B_16_20}& \mathrm{B_16_21}& \mathrm{B_16_22}& \mathrm{B_16_23}& \mathrm{B_16_24}& \mathrm{B_16_25}& \mathrm{B_16_26}& \mathrm{B_16_27}& \mathrm{B_16_28}\\ \mathrm{B_17_1}& \mathrm{B_17_2}& \mathrm{B_17_3}& \mathrm{B_17_4}& \mathrm{B_17_5}& \mathrm{B_17_6}& \mathrm{B_17_7}& \mathrm{B_17_8}& \mathrm{B_17_9}& \mathrm{B_17_10}& \mathrm{B_17_11}& \mathrm{B_17_12}& \mathrm{B_17_13}& \mathrm{B_17_14}& \mathrm{B_17_15}& \mathrm{B_17_16}& \mathrm{B_17_17}& \mathrm{B_17_18}& \mathrm{B_17_19}& \mathrm{B_17_20}& \mathrm{B_17_21}& \mathrm{B_17_22}& \mathrm{B_17_23}& \mathrm{B_17_24}& \mathrm{B_17_25}& \mathrm{B_17_26}& \mathrm{B_17_27}& \mathrm{B_17_28}\\ \mathrm{B_18_1}& \mathrm{B_18_2}& \mathrm{B_18_3}& \mathrm{B_18_4}& \mathrm{B_18_5}& \mathrm{B_18_6}& \mathrm{B_18_7}& \mathrm{B_18_8}& \mathrm{B_18_9}& \mathrm{B_18_10}& \mathrm{B_18_11}& \mathrm{B_18_12}& \mathrm{B_18_13}& \mathrm{B_18_14}& \mathrm{B_18_15}& \mathrm{B_18_16}& \mathrm{B_18_17}& \mathrm{B_18_18}& \mathrm{B_18_19}& \mathrm{B_18_20}& \mathrm{B_18_21}& \mathrm{B_18_22}& \mathrm{B_18_23}& \mathrm{B_18_24}& \mathrm{B_18_25}& \mathrm{B_18_26}& \mathrm{B_18_27}& \mathrm{B_18_28}\\ \mathrm{B_19_1}& \mathrm{B_19_2}& \mathrm{B_19_3}& \mathrm{B_19_4}& \mathrm{B_19_5}& \mathrm{B_19_6}& \mathrm{B_19_7}& \mathrm{B_19_8}& \mathrm{B_19_9}& \mathrm{B_19_10}& \mathrm{B_19_11}& \mathrm{B_19_12}& \mathrm{B_19_13}& \mathrm{B_19_14}& \mathrm{B_19_15}& \mathrm{B_19_16}& \mathrm{B_19_17}& \mathrm{B_19_18}& \mathrm{B_19_19}& \mathrm{B_19_20}& \mathrm{B_19_21}& \mathrm{B_19_22}& \mathrm{B_19_23}& \mathrm{B_19_24}& \mathrm{B_19_25}& \mathrm{B_19_26}& \mathrm{B_19_27}& \mathrm{B_19_28}\\ \mathrm{B_20_1}& \mathrm{B_20_2}& \mathrm{B_20_3}& \mathrm{B_20_4}& \mathrm{B_20_5}& \mathrm{B_20_6}& \mathrm{B_20_7}& \mathrm{B_20_8}& \mathrm{B_20_9}& \mathrm{B_20_10}& \mathrm{B_20_11}& \mathrm{B_20_12}& \mathrm{B_20_13}& \mathrm{B_20_14}& \mathrm{B_20_15}& \mathrm{B_20_16}& \mathrm{B_20_17}& \mathrm{B_20_18}& \mathrm{B_20_19}& \mathrm{B_20_20}& \mathrm{B_20_21}& \mathrm{B_20_22}& \mathrm{B_20_23}& \mathrm{B_20_24}& \mathrm{B_20_25}& \mathrm{B_20_26}& \mathrm{B_20_27}& \mathrm{B_20_28}\\ \mathrm{B_21_1}& \mathrm{B_21_2}& \mathrm{B_21_3}& \mathrm{B_21_4}& \mathrm{B_21_5}& \mathrm{B_21_6}& \mathrm{B_21_7}& \mathrm{B_21_8}& \mathrm{B_21_9}& \mathrm{B_21_10}& \mathrm{B_21_11}& \mathrm{B_21_12}& \mathrm{B_21_13}& \mathrm{B_21_14}& \mathrm{B_21_15}& \mathrm{B_21_16}& \mathrm{B_21_17}& \mathrm{B_21_18}& \mathrm{B_21_19}& \mathrm{B_21_20}& \mathrm{B_21_21}& \mathrm{B_21_22}& \mathrm{B_21_23}& \mathrm{B_21_24}& \mathrm{B_21_25}& \mathrm{B_21_26}& \mathrm{B_21_27}& \mathrm{B_21_28}\\ \mathrm{B_22_1}& \mathrm{B_22_2}& \mathrm{B_22_3}& \mathrm{B_22_4}& \mathrm{B_22_5}& \mathrm{B_22_6}& \mathrm{B_22_7}& \mathrm{B_22_8}& \mathrm{B_22_9}& \mathrm{B_22_10}& \mathrm{B_22_11}& \mathrm{B_22_12}& \mathrm{B_22_13}& \mathrm{B_22_14}& \mathrm{B_22_15}& \mathrm{B_22_16}& \mathrm{B_22_17}& \mathrm{B_22_18}& \mathrm{B_22_19}& \mathrm{B_22_20}& \mathrm{B_22_21}& \mathrm{B_22_22}& \mathrm{B_22_23}& \mathrm{B_22_24}& \mathrm{B_22_25}& \mathrm{B_22_26}& \mathrm{B_22_27}& \mathrm{B_22_28}\\ \mathrm{B_23_1}& \mathrm{B_23_2}& \mathrm{B_23_3}& \mathrm{B_23_4}& \mathrm{B_23_5}& \mathrm{B_23_6}& \mathrm{B_23_7}& \mathrm{B_23_8}& \mathrm{B_23_9}& \mathrm{B_23_10}& \mathrm{B_23_11}& \mathrm{B_23_12}& \mathrm{B_23_13}& \mathrm{B_23_14}& \mathrm{B_23_15}& \mathrm{B_23_16}& \mathrm{B_23_17}& \mathrm{B_23_18}& \mathrm{B_23_19}& \mathrm{B_23_20}& \mathrm{B_23_21}& \mathrm{B_23_22}& \mathrm{B_23_23}& \mathrm{B_23_24}& \mathrm{B_23_25}& \mathrm{B_23_26}& \mathrm{B_23_27}& \mathrm{B_23_28}\\ \mathrm{B_24_1}& \mathrm{B_24_2}& \mathrm{B_24_3}& \mathrm{B_24_4}& \mathrm{B_24_5}& \mathrm{B_24_6}& \mathrm{B_24_7}& \mathrm{B_24_8}& \mathrm{B_24_9}& \mathrm{B_24_10}& \mathrm{B_24_11}& \mathrm{B_24_12}& \mathrm{B_24_13}& \mathrm{B_24_14}& \mathrm{B_24_15}& \mathrm{B_24_16}& \mathrm{B_24_17}& \mathrm{B_24_18}& \mathrm{B_24_19}& \mathrm{B_24_20}& \mathrm{B_24_21}& \mathrm{B_24_22}& \mathrm{B_24_23}& \mathrm{B_24_24}& \mathrm{B_24_25}& \mathrm{B_24_26}& \mathrm{B_24_27}& \mathrm{B_24_28}\end{array}\right),\left(\begin{array}{ccc}\mathrm{C_1_1}& \mathrm{C_1_2}& \mathrm{C_1_3}\\ \mathrm{C_2_1}& \mathrm{C_2_2}& \mathrm{C_2_3}\\ \mathrm{C_3_1}& \mathrm{C_3_2}& \mathrm{C_3_3}\\ \mathrm{C_4_1}& \mathrm{C_4_2}& \mathrm{C_4_3}\\ \mathrm{C_5_1}& \mathrm{C_5_2}& \mathrm{C_5_3}\\ \mathrm{C_6_1}& \mathrm{C_6_2}& \mathrm{C_6_3}\\ \mathrm{C_7_1}& \mathrm{C_7_2}& \mathrm{C_7_3}\\ \mathrm{C_8_1}& \mathrm{C_8_2}& \mathrm{C_8_3}\\ \mathrm{C_9_1}& \mathrm{C_9_2}& \mathrm{C_9_3}\\ \mathrm{C_10_1}& \mathrm{C_10_2}& \mathrm{C_10_3}\\ \mathrm{C_11_1}& \mathrm{C_11_2}& \mathrm{C_11_3}\\ \mathrm{C_12_1}& \mathrm{C_12_2}& \mathrm{C_12_3}\\ \mathrm{C_13_1}& \mathrm{C_13_2}& \mathrm{C_13_3}\\ \mathrm{C_14_1}& \mathrm{C_14_2}& \mathrm{C_14_3}\\ \mathrm{C_15_1}& \mathrm{C_15_2}& \mathrm{C_15_3}\\ \mathrm{C_16_1}& \mathrm{C_16_2}& \mathrm{C_16_3}\\ \mathrm{C_17_1}& \mathrm{C_17_2}& \mathrm{C_17_3}\\ \mathrm{C_18_1}& \mathrm{C_18_2}& \mathrm{C_18_3}\\ \mathrm{C_19_1}& \mathrm{C_19_2}& \mathrm{C_19_3}\\ \mathrm{C_20_1}& \mathrm{C_20_2}& \mathrm{C_20_3}\\ \mathrm{C_21_1}& \mathrm{C_21_2}& \mathrm{C_21_3}\\ \mathrm{C_22_1}& \mathrm{C_22_2}& \mathrm{C_22_3}\\ \mathrm{C_23_1}& \mathrm{C_23_2}& \mathrm{C_23_3}\\ \mathrm{C_24_1}& \mathrm{C_24_2}& \mathrm{C_24_3}\\ \mathrm{C_25_1}& \mathrm{C_25_2}& \mathrm{C_25_3}\\ \mathrm{C_26_1}& \mathrm{C_26_2}& \mathrm{C_26_3}\\ \mathrm{C_27_1}& \mathrm{C_27_2}& \mathrm{C_27_3}\\ \mathrm{C_28_1}& \mathrm{C_28_2}& \mathrm{C_28_3}\end{array}\right)\right)\right)=\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_2_13}+\mathrm{A_2_21}& \mathrm{A_2_14}+\mathrm{A_2_22}& \mathrm{A_2_15}+\mathrm{A_2_23}& \mathrm{A_2_16}+\mathrm{A_2_24}\\ -\mathrm{A_1_13}+\mathrm{A_3_13}-\mathrm{A_1_21}+\mathrm{A_3_21}& -\mathrm{A_1_14}+\mathrm{A_3_14}-\mathrm{A_1_22}+\mathrm{A_3_22}& -\mathrm{A_1_15}+\mathrm{A_3_15}-\mathrm{A_1_23}+\mathrm{A_3_23}& -\mathrm{A_1_16}+\mathrm{A_3_16}-\mathrm{A_1_24}+\mathrm{A_3_24}\end{array}\right),\left(\begin{array}{cccc}-\mathrm{B_21_9}+\mathrm{B_21_13}& -\mathrm{B_21_10}+\mathrm{B_21_14}& -\mathrm{B_21_11}+\mathrm{B_21_15}& -\mathrm{B_21_12}+\mathrm{B_21_16}\\ -\mathrm{B_22_9}+\mathrm{B_22_13}& -\mathrm{B_22_10}+\mathrm{B_22_14}& -\mathrm{B_22_11}+\mathrm{B_22_15}& -\mathrm{B_22_12}+\mathrm{B_22_16}\\ -\mathrm{B_23_9}+\mathrm{B_23_13}& -\mathrm{B_23_10}+\mathrm{B_23_14}& -\mathrm{B_23_11}+\mathrm{B_23_15}& -\mathrm{B_23_12}+\mathrm{B_23_16}\\ -\mathrm{B_24_9}+\mathrm{B_24_13}& -\mathrm{B_24_10}+\mathrm{B_24_14}& -\mathrm{B_24_11}+\mathrm{B_24_15}& -\mathrm{B_24_12}+\mathrm{B_24_16}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_13_2}+\mathrm{C_21_2}& \mathrm{C_13_3}+\mathrm{C_21_3}\\ \mathrm{C_14_2}+\mathrm{C_22_2}& \mathrm{C_14_3}+\mathrm{C_22_3}\\ \mathrm{C_15_2}+\mathrm{C_23_2}& \mathrm{C_15_3}+\mathrm{C_23_3}\\ \mathrm{C_16_2}+\mathrm{C_24_2}& \mathrm{C_16_3}+\mathrm{C_24_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}-\mathrm{A_1_9}+\mathrm{A_3_9}-\mathrm{A_1_13}+\mathrm{A_3_13}+\mathrm{A_1_21}-\mathrm{A_3_21}& -\mathrm{A_1_10}+\mathrm{A_3_10}-\mathrm{A_1_14}+\mathrm{A_3_14}+\mathrm{A_1_22}-\mathrm{A_3_22}& -\mathrm{A_1_11}+\mathrm{A_3_11}-\mathrm{A_1_15}+\mathrm{A_3_15}+\mathrm{A_1_23}-\mathrm{A_3_23}& -\mathrm{A_1_12}+\mathrm{A_3_12}-\mathrm{A_1_16}+\mathrm{A_3_16}+\mathrm{A_1_24}-\mathrm{A_3_24}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_21_9}& \mathrm{B_21_10}& \mathrm{B_21_11}& \mathrm{B_21_12}\\ \mathrm{B_22_9}& \mathrm{B_22_10}& \mathrm{B_22_11}& \mathrm{B_22_12}\\ \mathrm{B_23_9}& \mathrm{B_23_10}& \mathrm{B_23_11}& \mathrm{B_23_12}\\ \mathrm{B_24_9}& \mathrm{B_24_10}& \mathrm{B_24_11}& \mathrm{B_24_12}\end{array}\right),\left(\begin{array}{c}\mathrm{C_9_1}+\mathrm{C_13_1}-\mathrm{C_21_1}\\ \mathrm{C_10_1}+\mathrm{C_14_1}-\mathrm{C_22_1}\\ \mathrm{C_11_1}+\mathrm{C_15_1}-\mathrm{C_23_1}\\ \mathrm{C_12_1}+\mathrm{C_16_1}-\mathrm{C_24_1}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}-\frac{\left(-\mathrm{a11}+1\right)\mathrm{A_1_1}}{\mathrm{a51}}-\frac{\left(\mathrm{a21}+1\right)\mathrm{A_1_5}}{\mathrm{a51}}+\frac{\mathrm{A_1_9}\mathrm{a31}}{\mathrm{a51}}-\frac{\mathrm{A_1_13}\mathrm{a41}}{\mathrm{a51}}+\mathrm{A_1_17}-\frac{\mathrm{A_1_21}\mathrm{a61}}{\mathrm{a51}}& -\frac{\left(-\mathrm{a11}+1\right)\mathrm{A_1_2}}{\mathrm{a51}}-\frac{\left(\mathrm{a21}+1\right)\mathrm{A_1_6}}{\mathrm{a51}}+\frac{\mathrm{A_1_10}\mathrm{a31}}{\mathrm{a51}}-\frac{\mathrm{A_1_14}\mathrm{a41}}{\mathrm{a51}}+\mathrm{A_1_18}-\frac{\mathrm{A_1_22}\mathrm{a61}}{\mathrm{a51}}& -\frac{\left(-\mathrm{a11}+1\right)\mathrm{A_1_3}}{\mathrm{a51}}-\frac{\left(\mathrm{a21}+1\right)\mathrm{A_1_7}}{\mathrm{a51}}+\frac{\mathrm{A_1_11}\mathrm{a31}}{\mathrm{a51}}-\frac{\mathrm{A_1_15}\mathrm{a41}}{\mathrm{a51}}+\mathrm{A_1_19}-\frac{\mathrm{A_1_23}\mathrm{a61}}{\mathrm{a51}}& -\frac{\left(-\mathrm{a11}+1\right)\mathrm{A_1_4}}{\mathrm{a51}}-\frac{\left(\mathrm{a21}+1\right)\mathrm{A_1_8}}{\mathrm{a51}}+\frac{\mathrm{A_1_12}\mathrm{a31}}{\mathrm{a51}}-\frac{\mathrm{A_1_16}\mathrm{a41}}{\mathrm{a51}}+\mathrm{A_1_20}-\frac{\mathrm{A_1_24}\mathrm{a61}}{\mathrm{a51}}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_17_1}& \mathrm{B_17_2}& \mathrm{B_17_3}& \mathrm{B_17_4}\\ \mathrm{B_18_1}& \mathrm{B_18_2}& \mathrm{B_18_3}& \mathrm{B_18_4}\\ \mathrm{B_19_1}& \mathrm{B_19_2}& \mathrm{B_19_3}& \mathrm{B_19_4}\\ \mathrm{B_20_1}& \mathrm{B_20_2}& \mathrm{B_20_3}& \mathrm{B_20_4}\end{array}\right),\left(\begin{array}{c}\mathrm{C_1_1}+\mathrm{C_5_1}-\mathrm{C_25_1}+\mathrm{C_1_3}+\mathrm{C_5_3}-\mathrm{C_25_3}\\ \mathrm{C_2_1}+\mathrm{C_6_1}-\mathrm{C_26_1}+\mathrm{C_2_3}+\mathrm{C_6_3}-\mathrm{C_26_3}\\ \mathrm{C_3_1}+\mathrm{C_7_1}-\mathrm{C_27_1}+\mathrm{C_3_3}+\mathrm{C_7_3}-\mathrm{C_27_3}\\ \mathrm{C_4_1}+\mathrm{C_8_1}-\mathrm{C_28_1}+\mathrm{C_4_3}+\mathrm{C_8_3}-\mathrm{C_28_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_2_1}\mathrm{a11}-\mathrm{A_2_13}\mathrm{a41}+\mathrm{A_2_17}\mathrm{a51}-\mathrm{A_2_5}\mathrm{a21}+\mathrm{A_2_9}\mathrm{a31}+\left(-\mathrm{a61}+1\right)\mathrm{A_2_21}& \mathrm{A_2_10}\mathrm{a31}-\mathrm{A_2_14}\mathrm{a41}+\mathrm{A_2_18}\mathrm{a51}+\mathrm{A_2_2}\mathrm{a11}-\mathrm{A_2_6}\mathrm{a21}+\left(-\mathrm{a61}+1\right)\mathrm{A_2_22}& \mathrm{A_2_11}\mathrm{a31}-\mathrm{A_2_15}\mathrm{a41}+\mathrm{A_2_19}\mathrm{a51}+\mathrm{A_2_3}\mathrm{a11}-\mathrm{A_2_7}\mathrm{a21}+\left(-\mathrm{a61}+1\right)\mathrm{A_2_23}& \mathrm{A_2_12}\mathrm{a31}-\mathrm{A_2_16}\mathrm{a41}+\mathrm{A_2_20}\mathrm{a51}+\mathrm{A_2_4}\mathrm{a11}-\mathrm{A_2_8}\mathrm{a21}+\left(-\mathrm{a61}+1\right)\mathrm{A_2_24}\\ -\mathrm{A_1_1}\mathrm{a11}+\mathrm{A_1_13}\mathrm{a41}-\mathrm{A_1_17}\mathrm{a51}+\mathrm{A_1_5}\mathrm{a21}-\mathrm{A_1_9}\mathrm{a31}+\mathrm{A_3_1}\mathrm{a11}-\mathrm{A_3_13}\mathrm{a41}+\mathrm{A_3_17}\mathrm{a51}-\mathrm{A_3_5}\mathrm{a21}+\mathrm{A_3_9}\mathrm{a31}+\left(\mathrm{a61}-1\right)\mathrm{A_1_21}+\left(-\mathrm{a61}+1\right)\mathrm{A_3_21}& -\mathrm{A_1_10}\mathrm{a31}+\mathrm{A_1_14}\mathrm{a41}-\mathrm{A_1_18}\mathrm{a51}-\mathrm{A_1_2}\mathrm{a11}+\mathrm{A_1_6}\mathrm{a21}+\mathrm{A_3_10}\mathrm{a31}-\mathrm{A_3_14}\mathrm{a41}+\mathrm{A_3_18}\mathrm{a51}+\mathrm{A_3_2}\mathrm{a11}-\mathrm{A_3_6}\mathrm{a21}+\left(\mathrm{a61}-1\right)\mathrm{A_1_22}+\left(-\mathrm{a61}+1\right)\mathrm{A_3_22}& -\mathrm{A_1_11}\mathrm{a31}+\mathrm{A_1_15}\mathrm{a41}-\mathrm{A_1_19}\mathrm{a51}-\mathrm{A_1_3}\mathrm{a11}+\mathrm{A_1_7}\mathrm{a21}+\mathrm{A_3_11}\mathrm{a31}-\mathrm{A_3_15}\mathrm{a41}+\mathrm{A_3_19}\mathrm{a51}+\mathrm{A_3_3}\mathrm{a11}-\mathrm{A_3_7}\mathrm{a21}+\left(\mathrm{a61}-1\right)\mathrm{A_1_23}+\left(-\mathrm{a61}+1\right)\mathrm{A_3_23}& -\mathrm{A_1_12}\mathrm{a31}+\mathrm{A_1_16}\mathrm{a41}-\mathrm{A_1_20}\mathrm{a51}-\mathrm{A_1_4}\mathrm{a11}+\mathrm{A_1_8}\mathrm{a21}+\mathrm{A_3_12}\mathrm{a31}-\mathrm{A_3_16}\mathrm{a41}+\mathrm{A_3_20}\mathrm{a51}+\mathrm{A_3_4}\mathrm{a11}-\mathrm{A_3_8}\mathrm{a21}+\left(\mathrm{a61}-1\right)\mathrm{A_1_24}+\left(-\mathrm{a61}+1\right)\mathrm{A_3_24}\end{array}\right),\left(\begin{array}{cccc}-\frac{\mathrm{a61}\mathrm{B_13_25}}{\mathrm{a41}}+\mathrm{B_21_25}& -\frac{\mathrm{a61}\mathrm{B_13_26}}{\mathrm{a41}}+\mathrm{B_21_26}& -\frac{\mathrm{a61}\mathrm{B_13_27}}{\mathrm{a41}}+\mathrm{B_21_27}& -\frac{\mathrm{a61}\mathrm{B_13_28}}{\mathrm{a41}}+\mathrm{B_21_28}\\ -\frac{\mathrm{a61}\mathrm{B_14_25}}{\mathrm{a41}}+\mathrm{B_22_25}& -\frac{\mathrm{a61}\mathrm{B_14_26}}{\mathrm{a41}}+\mathrm{B_22_26}& -\frac{\mathrm{a61}\mathrm{B_14_27}}{\mathrm{a41}}+\mathrm{B_22_27}& -\frac{\mathrm{a61}\mathrm{B_14_28}}{\mathrm{a41}}+\mathrm{B_22_28}\\ -\frac{\mathrm{a61}\mathrm{B_15_25}}{\mathrm{a41}}+\mathrm{B_23_25}& -\frac{\mathrm{a61}\mathrm{B_15_26}}{\mathrm{a41}}+\mathrm{B_23_26}& -\frac{\mathrm{a61}\mathrm{B_15_27}}{\mathrm{a41}}+\mathrm{B_23_27}& -\frac{\mathrm{a61}\mathrm{B_15_28}}{\mathrm{a41}}+\mathrm{B_23_28}\\ -\frac{\mathrm{a61}\mathrm{B_16_25}}{\mathrm{a41}}+\mathrm{B_24_25}& -\frac{\mathrm{a61}\mathrm{B_16_26}}{\mathrm{a41}}+\mathrm{B_24_26}& -\frac{\mathrm{a61}\mathrm{B_16_27}}{\mathrm{a41}}+\mathrm{B_24_27}& -\frac{\mathrm{a61}\mathrm{B_16_28}}{\mathrm{a41}}+\mathrm{B_24_28}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_21_2}+\mathrm{C_25_2}& \mathrm{C_21_3}+\mathrm{C_25_3}\\ \mathrm{C_22_2}+\mathrm{C_26_2}& \mathrm{C_22_3}+\mathrm{C_26_3}\\ \mathrm{C_23_2}+\mathrm{C_27_2}& \mathrm{C_23_3}+\mathrm{C_27_3}\\ \mathrm{C_24_2}+\mathrm{C_28_2}& \mathrm{C_24_3}+\mathrm{C_28_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_2_1}& \mathrm{A_2_2}& \mathrm{A_2_3}& \mathrm{A_2_4}\\ \mathrm{A_3_1}& \mathrm{A_3_2}& \mathrm{A_3_3}& \mathrm{A_3_4}\end{array}\right),\left(\begin{array}{cccc}-\mathrm{B_5_1}+\mathrm{B_1_1}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_17_1}}{\mathrm{a51}}-\mathrm{B_1_9}-\mathrm{B_1_21}-\frac{\mathrm{a11}\mathrm{B_5_21}}{\mathrm{a21}}& \mathrm{B_1_2}-\mathrm{B_5_2}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_17_2}}{\mathrm{a51}}-\mathrm{B_1_10}-\mathrm{B_1_22}-\frac{\mathrm{a11}\mathrm{B_5_22}}{\mathrm{a21}}& \mathrm{B_1_3}-\mathrm{B_5_3}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_17_3}}{\mathrm{a51}}-\mathrm{B_1_11}-\mathrm{B_1_23}-\frac{\mathrm{a11}\mathrm{B_5_23}}{\mathrm{a21}}& \mathrm{B_1_4}-\mathrm{B_5_4}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_17_4}}{\mathrm{a51}}-\mathrm{B_1_12}-\mathrm{B_1_24}-\frac{\mathrm{a11}\mathrm{B_5_24}}{\mathrm{a21}}\\ \mathrm{B_2_1}-\mathrm{B_6_1}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_18_1}}{\mathrm{a51}}-\mathrm{B_2_9}-\mathrm{B_2_21}-\frac{\mathrm{a11}\mathrm{B_6_21}}{\mathrm{a21}}& \mathrm{B_2_2}-\mathrm{B_6_2}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_18_2}}{\mathrm{a51}}-\mathrm{B_2_10}-\mathrm{B_2_22}-\frac{\mathrm{a11}\mathrm{B_6_22}}{\mathrm{a21}}& \mathrm{B_2_3}-\mathrm{B_6_3}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_18_3}}{\mathrm{a51}}-\mathrm{B_2_11}-\mathrm{B_2_23}-\frac{\mathrm{a11}\mathrm{B_6_23}}{\mathrm{a21}}& \mathrm{B_2_4}-\mathrm{B_6_4}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_18_4}}{\mathrm{a51}}-\mathrm{B_2_12}-\mathrm{B_2_24}-\frac{\mathrm{a11}\mathrm{B_6_24}}{\mathrm{a21}}\\ \mathrm{B_3_1}-\mathrm{B_7_1}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_19_1}}{\mathrm{a51}}-\mathrm{B_3_9}-\mathrm{B_3_21}-\frac{\mathrm{a11}\mathrm{B_7_21}}{\mathrm{a21}}& \mathrm{B_3_2}-\mathrm{B_7_2}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_19_2}}{\mathrm{a51}}-\mathrm{B_3_10}-\mathrm{B_3_22}-\frac{\mathrm{a11}\mathrm{B_7_22}}{\mathrm{a21}}& \mathrm{B_3_3}-\mathrm{B_7_3}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_19_3}}{\mathrm{a51}}-\mathrm{B_3_11}-\mathrm{B_3_23}-\frac{\mathrm{a11}\mathrm{B_7_23}}{\mathrm{a21}}& \mathrm{B_3_4}-\mathrm{B_7_4}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_19_4}}{\mathrm{a51}}-\mathrm{B_3_12}-\mathrm{B_3_24}-\frac{\mathrm{a11}\mathrm{B_7_24}}{\mathrm{a21}}\\ \mathrm{B_4_1}-\mathrm{B_8_1}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_20_1}}{\mathrm{a51}}-\mathrm{B_4_9}-\mathrm{B_4_21}-\frac{\mathrm{a11}\mathrm{B_8_21}}{\mathrm{a21}}& \mathrm{B_4_2}-\mathrm{B_8_2}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_20_2}}{\mathrm{a51}}-\mathrm{B_4_10}-\mathrm{B_4_22}-\frac{\mathrm{a11}\mathrm{B_8_22}}{\mathrm{a21}}& \mathrm{B_4_3}-\mathrm{B_8_3}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_20_3}}{\mathrm{a51}}-\mathrm{B_4_11}-\mathrm{B_4_23}-\frac{\mathrm{a11}\mathrm{B_8_23}}{\mathrm{a21}}& \mathrm{B_4_4}-\mathrm{B_8_4}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_20_4}}{\mathrm{a51}}-\mathrm{B_4_12}-\mathrm{B_4_24}-\frac{\mathrm{a11}\mathrm{B_8_24}}{\mathrm{a21}}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_1_2}& \mathrm{C_1_1}+\mathrm{C_1_3}\\ \mathrm{C_2_2}& \mathrm{C_2_1}+\mathrm{C_2_3}\\ \mathrm{C_3_2}& \mathrm{C_3_1}+\mathrm{C_3_3}\\ \mathrm{C_4_2}& \mathrm{C_4_1}+\mathrm{C_4_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_1_5}& \mathrm{A_1_6}& \mathrm{A_1_7}& \mathrm{A_1_8}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_13_1}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_17_1}}{\mathrm{a51}}-\mathrm{B_1_5}+\mathrm{B_5_5}-\mathrm{B_13_5}-\frac{\left(\mathrm{a11}+\mathrm{a21}-\mathrm{a41}-1\right)\mathrm{B_21_5}}{\mathrm{a61}}-\mathrm{B_5_9}& \mathrm{B_13_2}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_17_2}}{\mathrm{a51}}-\mathrm{B_1_6}+\mathrm{B_5_6}-\mathrm{B_13_6}-\frac{\left(\mathrm{a11}+\mathrm{a21}-\mathrm{a41}-1\right)\mathrm{B_21_6}}{\mathrm{a61}}-\mathrm{B_5_10}& \mathrm{B_13_3}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_17_3}}{\mathrm{a51}}-\mathrm{B_1_7}+\mathrm{B_5_7}-\mathrm{B_13_7}-\frac{\left(\mathrm{a11}+\mathrm{a21}-\mathrm{a41}-1\right)\mathrm{B_21_7}}{\mathrm{a61}}-\mathrm{B_5_11}& \mathrm{B_13_4}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_17_4}}{\mathrm{a51}}-\mathrm{B_1_8}+\mathrm{B_5_8}-\mathrm{B_13_8}-\frac{\left(\mathrm{a11}+\mathrm{a21}-\mathrm{a41}-1\right)\mathrm{B_21_8}}{\mathrm{a61}}-\mathrm{B_5_12}\\ \mathrm{B_14_1}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_18_1}}{\mathrm{a51}}-\mathrm{B_2_5}+\mathrm{B_6_5}-\mathrm{B_14_5}-\frac{\left(\mathrm{a11}+\mathrm{a21}-\mathrm{a41}-1\right)\mathrm{B_22_5}}{\mathrm{a61}}-\mathrm{B_6_9}& \mathrm{B_14_2}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_18_2}}{\mathrm{a51}}-\mathrm{B_2_6}+\mathrm{B_6_6}-\mathrm{B_14_6}-\frac{\left(\mathrm{a11}+\mathrm{a21}-\mathrm{a41}-1\right)\mathrm{B_22_6}}{\mathrm{a61}}-\mathrm{B_6_10}& \mathrm{B_14_3}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_18_3}}{\mathrm{a51}}-\mathrm{B_2_7}+\mathrm{B_6_7}-\mathrm{B_14_7}-\frac{\left(\mathrm{a11}+\mathrm{a21}-\mathrm{a41}-1\right)\mathrm{B_22_7}}{\mathrm{a61}}-\mathrm{B_6_11}& \mathrm{B_14_4}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_18_4}}{\mathrm{a51}}-\mathrm{B_2_8}+\mathrm{B_6_8}-\mathrm{B_14_8}-\frac{\left(\mathrm{a11}+\mathrm{a21}-\mathrm{a41}-1\right)\mathrm{B_22_8}}{\mathrm{a61}}-\mathrm{B_6_12}\\ \mathrm{B_15_1}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_19_1}}{\mathrm{a51}}-\mathrm{B_3_5}+\mathrm{B_7_5}-\mathrm{B_15_5}-\frac{\left(\mathrm{a11}+\mathrm{a21}-\mathrm{a41}-1\right)\mathrm{B_23_5}}{\mathrm{a61}}-\mathrm{B_7_9}& \mathrm{B_15_2}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_19_2}}{\mathrm{a51}}-\mathrm{B_3_6}+\mathrm{B_7_6}-\mathrm{B_15_6}-\frac{\left(\mathrm{a11}+\mathrm{a21}-\mathrm{a41}-1\right)\mathrm{B_23_6}}{\mathrm{a61}}-\mathrm{B_7_10}& \mathrm{B_15_3}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_19_3}}{\mathrm{a51}}-\mathrm{B_3_7}+\mathrm{B_7_7}-\mathrm{B_15_7}-\frac{\left(\mathrm{a11}+\mathrm{a21}-\mathrm{a41}-1\right)\mathrm{B_23_7}}{\mathrm{a61}}-\mathrm{B_7_11}& \mathrm{B_15_4}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_19_4}}{\mathrm{a51}}-\mathrm{B_3_8}+\mathrm{B_7_8}-\mathrm{B_15_8}-\frac{\left(\mathrm{a11}+\mathrm{a21}-\mathrm{a41}-1\right)\mathrm{B_23_8}}{\mathrm{a61}}-\mathrm{B_7_12}\\ \mathrm{B_16_1}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_20_1}}{\mathrm{a51}}-\mathrm{B_4_5}+\mathrm{B_8_5}-\mathrm{B_16_5}-\frac{\left(\mathrm{a11}+\mathrm{a21}-\mathrm{a41}-1\right)\mathrm{B_24_5}}{\mathrm{a61}}-\mathrm{B_8_9}& \mathrm{B_16_2}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_20_2}}{\mathrm{a51}}-\mathrm{B_4_6}+\mathrm{B_8_6}-\mathrm{B_16_6}-\frac{\left(\mathrm{a11}+\mathrm{a21}-\mathrm{a41}-1\right)\mathrm{B_24_6}}{\mathrm{a61}}-\mathrm{B_8_10}& \mathrm{B_16_3}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_20_3}}{\mathrm{a51}}-\mathrm{B_4_7}+\mathrm{B_8_7}-\mathrm{B_16_7}-\frac{\left(\mathrm{a11}+\mathrm{a21}-\mathrm{a41}-1\right)\mathrm{B_24_7}}{\mathrm{a61}}-\mathrm{B_8_11}& \mathrm{B_16_4}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_20_4}}{\mathrm{a51}}-\mathrm{B_4_8}+\mathrm{B_8_8}-\mathrm{B_16_8}-\frac{\left(\mathrm{a11}+\mathrm{a21}-\mathrm{a41}-1\right)\mathrm{B_24_8}}{\mathrm{a61}}-\mathrm{B_8_12}\end{array}\right),\left(\begin{array}{c}\mathrm{C_5_1}+\mathrm{C_5_3}\\ \mathrm{C_6_1}+\mathrm{C_6_3}\\ \mathrm{C_7_1}+\mathrm{C_7_3}\\ \mathrm{C_8_1}+\mathrm{C_8_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_1_9}& \mathrm{A_1_10}& \mathrm{A_1_11}& \mathrm{A_1_12}\end{array}\right),\left(\begin{array}{cccc}-\mathrm{B_9_5}-\frac{\mathrm{a31}\mathrm{B_21_5}}{\mathrm{a61}}-\mathrm{B_1_9}+\mathrm{B_9_9}-\mathrm{B_13_9}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_1_17}}{\mathrm{a11}}+\mathrm{B_5_17}-\mathrm{B_9_17}& -\mathrm{B_9_6}-\frac{\mathrm{a31}\mathrm{B_21_6}}{\mathrm{a61}}-\mathrm{B_1_10}+\mathrm{B_9_10}-\mathrm{B_13_10}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_1_18}}{\mathrm{a11}}+\mathrm{B_5_18}-\mathrm{B_9_18}& -\mathrm{B_9_7}-\frac{\mathrm{a31}\mathrm{B_21_7}}{\mathrm{a61}}-\mathrm{B_1_11}+\mathrm{B_9_11}-\mathrm{B_13_11}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_1_19}}{\mathrm{a11}}+\mathrm{B_5_19}-\mathrm{B_9_19}& -\mathrm{B_9_8}-\frac{\mathrm{a31}\mathrm{B_21_8}}{\mathrm{a61}}-\mathrm{B_1_12}+\mathrm{B_9_12}-\mathrm{B_13_12}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_1_20}}{\mathrm{a11}}+\mathrm{B_5_20}-\mathrm{B_9_20}\\ -\mathrm{B_10_5}-\frac{\mathrm{a31}\mathrm{B_22_5}}{\mathrm{a61}}-\mathrm{B_2_9}+\mathrm{B_10_9}-\mathrm{B_14_9}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_2_17}}{\mathrm{a11}}+\mathrm{B_6_17}-\mathrm{B_10_17}& -\mathrm{B_10_6}-\frac{\mathrm{a31}\mathrm{B_22_6}}{\mathrm{a61}}-\mathrm{B_2_10}+\mathrm{B_10_10}-\mathrm{B_14_10}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_2_18}}{\mathrm{a11}}+\mathrm{B_6_18}-\mathrm{B_10_18}& -\mathrm{B_10_7}-\frac{\mathrm{a31}\mathrm{B_22_7}}{\mathrm{a61}}-\mathrm{B_2_11}+\mathrm{B_10_11}-\mathrm{B_14_11}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_2_19}}{\mathrm{a11}}+\mathrm{B_6_19}-\mathrm{B_10_19}& -\mathrm{B_10_8}-\frac{\mathrm{a31}\mathrm{B_22_8}}{\mathrm{a61}}-\mathrm{B_2_12}+\mathrm{B_10_12}-\mathrm{B_14_12}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_2_20}}{\mathrm{a11}}+\mathrm{B_6_20}-\mathrm{B_10_20}\\ -\mathrm{B_11_5}-\frac{\mathrm{a31}\mathrm{B_23_5}}{\mathrm{a61}}-\mathrm{B_3_9}+\mathrm{B_11_9}-\mathrm{B_15_9}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_3_17}}{\mathrm{a11}}+\mathrm{B_7_17}-\mathrm{B_11_17}& -\mathrm{B_11_6}-\frac{\mathrm{a31}\mathrm{B_23_6}}{\mathrm{a61}}-\mathrm{B_3_10}+\mathrm{B_11_10}-\mathrm{B_15_10}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_3_18}}{\mathrm{a11}}+\mathrm{B_7_18}-\mathrm{B_11_18}& -\mathrm{B_11_7}-\frac{\mathrm{a31}\mathrm{B_23_7}}{\mathrm{a61}}-\mathrm{B_3_11}+\mathrm{B_11_11}-\mathrm{B_15_11}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_3_19}}{\mathrm{a11}}+\mathrm{B_7_19}-\mathrm{B_11_19}& -\mathrm{B_11_8}-\frac{\mathrm{a31}\mathrm{B_23_8}}{\mathrm{a61}}-\mathrm{B_3_12}+\mathrm{B_11_12}-\mathrm{B_15_12}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_3_20}}{\mathrm{a11}}+\mathrm{B_7_20}-\mathrm{B_11_20}\\ -\mathrm{B_12_5}-\frac{\mathrm{a31}\mathrm{B_24_5}}{\mathrm{a61}}-\mathrm{B_4_9}+\mathrm{B_12_9}-\mathrm{B_16_9}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_4_17}}{\mathrm{a11}}+\mathrm{B_8_17}-\mathrm{B_12_17}& -\mathrm{B_12_6}-\frac{\mathrm{a31}\mathrm{B_24_6}}{\mathrm{a61}}-\mathrm{B_4_10}+\mathrm{B_12_10}-\mathrm{B_16_10}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_4_18}}{\mathrm{a11}}+\mathrm{B_8_18}-\mathrm{B_12_18}& -\mathrm{B_12_7}-\frac{\mathrm{a31}\mathrm{B_24_7}}{\mathrm{a61}}-\mathrm{B_4_11}+\mathrm{B_12_11}-\mathrm{B_16_11}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_4_19}}{\mathrm{a11}}+\mathrm{B_8_19}-\mathrm{B_12_19}& -\mathrm{B_12_8}-\frac{\mathrm{a31}\mathrm{B_24_8}}{\mathrm{a61}}-\mathrm{B_4_12}+\mathrm{B_12_12}-\mathrm{B_16_12}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_4_20}}{\mathrm{a11}}+\mathrm{B_8_20}-\mathrm{B_12_20}\end{array}\right),\left(\begin{array}{c}\mathrm{C_9_1}\\ \mathrm{C_10_1}\\ \mathrm{C_11_1}\\ \mathrm{C_12_1}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_2_9}& \mathrm{A_2_10}& \mathrm{A_2_11}& \mathrm{A_2_12}\\ \mathrm{A_3_9}& \mathrm{A_3_10}& \mathrm{A_3_11}& \mathrm{A_3_12}\end{array}\right),\left(\begin{array}{cccc}-\mathrm{B_9_1}+\frac{\mathrm{a31}\mathrm{B_17_1}}{\mathrm{a51}}+\mathrm{B_17_5}+\frac{\mathrm{a51}\mathrm{B_21_5}}{\mathrm{a61}}-\mathrm{B_5_9}+\mathrm{B_9_9}-\mathrm{B_17_9}-\mathrm{B_9_13}& -\mathrm{B_9_2}+\frac{\mathrm{a31}\mathrm{B_17_2}}{\mathrm{a51}}+\mathrm{B_17_6}+\frac{\mathrm{a51}\mathrm{B_21_6}}{\mathrm{a61}}-\mathrm{B_5_10}+\mathrm{B_9_10}-\mathrm{B_17_10}-\mathrm{B_9_14}& -\mathrm{B_9_3}+\frac{\mathrm{a31}\mathrm{B_17_3}}{\mathrm{a51}}+\mathrm{B_17_7}+\frac{\mathrm{a51}\mathrm{B_21_7}}{\mathrm{a61}}-\mathrm{B_5_11}+\mathrm{B_9_11}-\mathrm{B_17_11}-\mathrm{B_9_15}& -\mathrm{B_9_4}+\frac{\mathrm{a31}\mathrm{B_17_4}}{\mathrm{a51}}+\mathrm{B_17_8}+\frac{\mathrm{a51}\mathrm{B_21_8}}{\mathrm{a61}}-\mathrm{B_5_12}+\mathrm{B_9_12}-\mathrm{B_17_12}-\mathrm{B_9_16}\\ -\mathrm{B_10_1}+\frac{\mathrm{a31}\mathrm{B_18_1}}{\mathrm{a51}}+\mathrm{B_18_5}+\frac{\mathrm{a51}\mathrm{B_22_5}}{\mathrm{a61}}-\mathrm{B_6_9}+\mathrm{B_10_9}-\mathrm{B_18_9}-\mathrm{B_10_13}& -\mathrm{B_10_2}+\frac{\mathrm{a31}\mathrm{B_18_2}}{\mathrm{a51}}+\mathrm{B_18_6}+\frac{\mathrm{a51}\mathrm{B_22_6}}{\mathrm{a61}}-\mathrm{B_6_10}+\mathrm{B_10_10}-\mathrm{B_18_10}-\mathrm{B_10_14}& -\mathrm{B_10_3}+\frac{\mathrm{a31}\mathrm{B_18_3}}{\mathrm{a51}}+\mathrm{B_18_7}+\frac{\mathrm{a51}\mathrm{B_22_7}}{\mathrm{a61}}-\mathrm{B_6_11}+\mathrm{B_10_11}-\mathrm{B_18_11}-\mathrm{B_10_15}& -\mathrm{B_10_4}+\frac{\mathrm{a31}\mathrm{B_18_4}}{\mathrm{a51}}+\mathrm{B_18_8}+\frac{\mathrm{a51}\mathrm{B_22_8}}{\mathrm{a61}}-\mathrm{B_6_12}+\mathrm{B_10_12}-\mathrm{B_18_12}-\mathrm{B_10_16}\\ -\mathrm{B_11_1}+\frac{\mathrm{a31}\mathrm{B_19_1}}{\mathrm{a51}}+\mathrm{B_19_5}+\frac{\mathrm{a51}\mathrm{B_23_5}}{\mathrm{a61}}-\mathrm{B_7_9}+\mathrm{B_11_9}-\mathrm{B_19_9}-\mathrm{B_11_13}& -\mathrm{B_11_2}+\frac{\mathrm{a31}\mathrm{B_19_2}}{\mathrm{a51}}+\mathrm{B_19_6}+\frac{\mathrm{a51}\mathrm{B_23_6}}{\mathrm{a61}}-\mathrm{B_7_10}+\mathrm{B_11_10}-\mathrm{B_19_10}-\mathrm{B_11_14}& -\mathrm{B_11_3}+\frac{\mathrm{a31}\mathrm{B_19_3}}{\mathrm{a51}}+\mathrm{B_19_7}+\frac{\mathrm{a51}\mathrm{B_23_7}}{\mathrm{a61}}-\mathrm{B_7_11}+\mathrm{B_11_11}-\mathrm{B_19_11}-\mathrm{B_11_15}& -\mathrm{B_11_4}+\frac{\mathrm{a31}\mathrm{B_19_4}}{\mathrm{a51}}+\mathrm{B_19_8}+\frac{\mathrm{a51}\mathrm{B_23_8}}{\mathrm{a61}}-\mathrm{B_7_12}+\mathrm{B_11_12}-\mathrm{B_19_12}-\mathrm{B_11_16}\\ -\mathrm{B_12_1}+\frac{\mathrm{a31}\mathrm{B_20_1}}{\mathrm{a51}}+\mathrm{B_20_5}+\frac{\mathrm{a51}\mathrm{B_24_5}}{\mathrm{a61}}-\mathrm{B_8_9}+\mathrm{B_12_9}-\mathrm{B_20_9}-\mathrm{B_12_13}& -\mathrm{B_12_2}+\frac{\mathrm{a31}\mathrm{B_20_2}}{\mathrm{a51}}+\mathrm{B_20_6}+\frac{\mathrm{a51}\mathrm{B_24_6}}{\mathrm{a61}}-\mathrm{B_8_10}+\mathrm{B_12_10}-\mathrm{B_20_10}-\mathrm{B_12_14}& -\mathrm{B_12_3}+\frac{\mathrm{a31}\mathrm{B_20_3}}{\mathrm{a51}}+\mathrm{B_20_7}+\frac{\mathrm{a51}\mathrm{B_24_7}}{\mathrm{a61}}-\mathrm{B_8_11}+\mathrm{B_12_11}-\mathrm{B_20_11}-\mathrm{B_12_15}& -\mathrm{B_12_4}+\frac{\mathrm{a31}\mathrm{B_20_4}}{\mathrm{a51}}+\mathrm{B_20_8}+\frac{\mathrm{a51}\mathrm{B_24_8}}{\mathrm{a61}}-\mathrm{B_8_12}+\mathrm{B_12_12}-\mathrm{B_20_12}-\mathrm{B_12_16}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_9_2}& \mathrm{C_9_3}\\ \mathrm{C_10_2}& \mathrm{C_10_3}\\ \mathrm{C_11_2}& \mathrm{C_11_3}\\ \mathrm{C_12_2}& \mathrm{C_12_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_2_9}& \mathrm{A_2_10}& \mathrm{A_2_11}& \mathrm{A_2_12}\\ \mathrm{A_3_9}& \mathrm{A_3_10}& \mathrm{A_3_11}& \mathrm{A_3_12}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_9_25}+\frac{\mathrm{a31}\mathrm{B_13_25}}{\mathrm{a41}}& \mathrm{B_9_26}+\frac{\mathrm{a31}\mathrm{B_13_26}}{\mathrm{a41}}& \mathrm{B_9_27}+\frac{\mathrm{a31}\mathrm{B_13_27}}{\mathrm{a41}}& \mathrm{B_9_28}+\frac{\mathrm{a31}\mathrm{B_13_28}}{\mathrm{a41}}\\ \mathrm{B_10_25}+\frac{\mathrm{a31}\mathrm{B_14_25}}{\mathrm{a41}}& \mathrm{B_10_26}+\frac{\mathrm{a31}\mathrm{B_14_26}}{\mathrm{a41}}& \mathrm{B_10_27}+\frac{\mathrm{a31}\mathrm{B_14_27}}{\mathrm{a41}}& \mathrm{B_10_28}+\frac{\mathrm{a31}\mathrm{B_14_28}}{\mathrm{a41}}\\ \mathrm{B_11_25}+\frac{\mathrm{a31}\mathrm{B_15_25}}{\mathrm{a41}}& \mathrm{B_11_26}+\frac{\mathrm{a31}\mathrm{B_15_26}}{\mathrm{a41}}& \mathrm{B_11_27}+\frac{\mathrm{a31}\mathrm{B_15_27}}{\mathrm{a41}}& \mathrm{B_11_28}+\frac{\mathrm{a31}\mathrm{B_15_28}}{\mathrm{a41}}\\ \mathrm{B_12_25}+\frac{\mathrm{a31}\mathrm{B_16_25}}{\mathrm{a41}}& \mathrm{B_12_26}+\frac{\mathrm{a31}\mathrm{B_16_26}}{\mathrm{a41}}& \mathrm{B_12_27}+\frac{\mathrm{a31}\mathrm{B_16_27}}{\mathrm{a41}}& \mathrm{B_12_28}+\frac{\mathrm{a31}\mathrm{B_16_28}}{\mathrm{a41}}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_25_2}& \mathrm{C_25_1}+\mathrm{C_25_3}\\ \mathrm{C_26_2}& \mathrm{C_26_1}+\mathrm{C_26_3}\\ \mathrm{C_27_2}& \mathrm{C_27_1}+\mathrm{C_27_3}\\ \mathrm{C_28_2}& \mathrm{C_28_1}+\mathrm{C_28_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_2_13}& \mathrm{A_2_14}& \mathrm{A_2_15}& \mathrm{A_2_16}\\ \mathrm{A_3_13}& \mathrm{A_3_14}& \mathrm{A_3_15}& \mathrm{A_3_16}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_13_1}+\frac{\mathrm{a41}\mathrm{B_17_1}}{\mathrm{a51}}-\mathrm{B_13_9}+\mathrm{B_1_13}-\mathrm{B_5_13}+\mathrm{B_13_13}-\mathrm{B_17_13}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_5_21}}{\mathrm{a21}}+\mathrm{B_9_21}-\mathrm{B_13_21}& \mathrm{B_13_2}+\frac{\mathrm{a41}\mathrm{B_17_2}}{\mathrm{a51}}-\mathrm{B_13_10}+\mathrm{B_1_14}-\mathrm{B_5_14}+\mathrm{B_13_14}-\mathrm{B_17_14}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_5_22}}{\mathrm{a21}}+\mathrm{B_9_22}-\mathrm{B_13_22}& \mathrm{B_13_3}+\frac{\mathrm{a41}\mathrm{B_17_3}}{\mathrm{a51}}-\mathrm{B_13_11}+\mathrm{B_1_15}-\mathrm{B_5_15}+\mathrm{B_13_15}-\mathrm{B_17_15}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_5_23}}{\mathrm{a21}}+\mathrm{B_9_23}-\mathrm{B_13_23}& \mathrm{B_13_4}+\frac{\mathrm{a41}\mathrm{B_17_4}}{\mathrm{a51}}-\mathrm{B_13_12}+\mathrm{B_1_16}-\mathrm{B_5_16}+\mathrm{B_13_16}-\mathrm{B_17_16}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_5_24}}{\mathrm{a21}}+\mathrm{B_9_24}-\mathrm{B_13_24}\\ \mathrm{B_14_1}+\frac{\mathrm{a41}\mathrm{B_18_1}}{\mathrm{a51}}-\mathrm{B_14_9}+\mathrm{B_2_13}-\mathrm{B_6_13}+\mathrm{B_14_13}-\mathrm{B_18_13}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_6_21}}{\mathrm{a21}}+\mathrm{B_10_21}-\mathrm{B_14_21}& \mathrm{B_14_2}+\frac{\mathrm{a41}\mathrm{B_18_2}}{\mathrm{a51}}-\mathrm{B_14_10}+\mathrm{B_2_14}-\mathrm{B_6_14}+\mathrm{B_14_14}-\mathrm{B_18_14}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_6_22}}{\mathrm{a21}}+\mathrm{B_10_22}-\mathrm{B_14_22}& \mathrm{B_14_3}+\frac{\mathrm{a41}\mathrm{B_18_3}}{\mathrm{a51}}-\mathrm{B_14_11}+\mathrm{B_2_15}-\mathrm{B_6_15}+\mathrm{B_14_15}-\mathrm{B_18_15}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_6_23}}{\mathrm{a21}}+\mathrm{B_10_23}-\mathrm{B_14_23}& \mathrm{B_14_4}+\frac{\mathrm{a41}\mathrm{B_18_4}}{\mathrm{a51}}-\mathrm{B_14_12}+\mathrm{B_2_16}-\mathrm{B_6_16}+\mathrm{B_14_16}-\mathrm{B_18_16}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_6_24}}{\mathrm{a21}}+\mathrm{B_10_24}-\mathrm{B_14_24}\\ \mathrm{B_15_1}+\frac{\mathrm{a41}\mathrm{B_19_1}}{\mathrm{a51}}-\mathrm{B_15_9}+\mathrm{B_3_13}-\mathrm{B_7_13}+\mathrm{B_15_13}-\mathrm{B_19_13}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_7_21}}{\mathrm{a21}}+\mathrm{B_11_21}-\mathrm{B_15_21}& \mathrm{B_15_2}+\frac{\mathrm{a41}\mathrm{B_19_2}}{\mathrm{a51}}-\mathrm{B_15_10}+\mathrm{B_3_14}-\mathrm{B_7_14}+\mathrm{B_15_14}-\mathrm{B_19_14}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_7_22}}{\mathrm{a21}}+\mathrm{B_11_22}-\mathrm{B_15_22}& \mathrm{B_15_3}+\frac{\mathrm{a41}\mathrm{B_19_3}}{\mathrm{a51}}-\mathrm{B_15_11}+\mathrm{B_3_15}-\mathrm{B_7_15}+\mathrm{B_15_15}-\mathrm{B_19_15}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_7_23}}{\mathrm{a21}}+\mathrm{B_11_23}-\mathrm{B_15_23}& \mathrm{B_15_4}+\frac{\mathrm{a41}\mathrm{B_19_4}}{\mathrm{a51}}-\mathrm{B_15_12}+\mathrm{B_3_16}-\mathrm{B_7_16}+\mathrm{B_15_16}-\mathrm{B_19_16}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_7_24}}{\mathrm{a21}}+\mathrm{B_11_24}-\mathrm{B_15_24}\\ \mathrm{B_16_1}+\frac{\mathrm{a41}\mathrm{B_20_1}}{\mathrm{a51}}-\mathrm{B_16_9}+\mathrm{B_4_13}-\mathrm{B_8_13}+\mathrm{B_16_13}-\mathrm{B_20_13}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_8_21}}{\mathrm{a21}}+\mathrm{B_12_21}-\mathrm{B_16_21}& \mathrm{B_16_2}+\frac{\mathrm{a41}\mathrm{B_20_2}}{\mathrm{a51}}-\mathrm{B_16_10}+\mathrm{B_4_14}-\mathrm{B_8_14}+\mathrm{B_16_14}-\mathrm{B_20_14}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_8_22}}{\mathrm{a21}}+\mathrm{B_12_22}-\mathrm{B_16_22}& \mathrm{B_16_3}+\frac{\mathrm{a41}\mathrm{B_20_3}}{\mathrm{a51}}-\mathrm{B_16_11}+\mathrm{B_4_15}-\mathrm{B_8_15}+\mathrm{B_16_15}-\mathrm{B_20_15}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_8_23}}{\mathrm{a21}}+\mathrm{B_12_23}-\mathrm{B_16_23}& \mathrm{B_16_4}+\frac{\mathrm{a41}\mathrm{B_20_4}}{\mathrm{a51}}-\mathrm{B_16_12}+\mathrm{B_4_16}-\mathrm{B_8_16}+\mathrm{B_16_16}-\mathrm{B_20_16}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_8_24}}{\mathrm{a21}}+\mathrm{B_12_24}-\mathrm{B_16_24}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_13_2}& \mathrm{C_13_1}+\mathrm{C_13_3}\\ \mathrm{C_14_2}& \mathrm{C_14_1}+\mathrm{C_14_3}\\ \mathrm{C_15_2}& \mathrm{C_15_1}+\mathrm{C_15_3}\\ \mathrm{C_16_2}& \mathrm{C_16_1}+\mathrm{C_16_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_1_17}& \mathrm{A_1_18}& \mathrm{A_1_19}& \mathrm{A_1_20}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_17_5}+\frac{\mathrm{a51}\mathrm{B_21_5}}{\mathrm{a61}}-\mathrm{B_17_9}+\frac{\left(-\mathrm{a41}-\mathrm{a51}+\mathrm{a21}-1\right)\mathrm{B_1_17}}{\mathrm{a11}}+\mathrm{B_5_17}-\mathrm{B_13_17}+\mathrm{B_17_17}-\frac{\mathrm{a51}\mathrm{B_5_21}}{\mathrm{a21}}-\mathrm{B_17_21}& \mathrm{B_17_6}+\frac{\mathrm{a51}\mathrm{B_21_6}}{\mathrm{a61}}-\mathrm{B_17_10}+\frac{\left(-\mathrm{a41}-\mathrm{a51}+\mathrm{a21}-1\right)\mathrm{B_1_18}}{\mathrm{a11}}+\mathrm{B_5_18}-\mathrm{B_13_18}+\mathrm{B_17_18}-\frac{\mathrm{a51}\mathrm{B_5_22}}{\mathrm{a21}}-\mathrm{B_17_22}& \mathrm{B_17_7}+\frac{\mathrm{a51}\mathrm{B_21_7}}{\mathrm{a61}}-\mathrm{B_17_11}+\frac{\left(-\mathrm{a41}-\mathrm{a51}+\mathrm{a21}-1\right)\mathrm{B_1_19}}{\mathrm{a11}}+\mathrm{B_5_19}-\mathrm{B_13_19}+\mathrm{B_17_19}-\frac{\mathrm{a51}\mathrm{B_5_23}}{\mathrm{a21}}-\mathrm{B_17_23}& \mathrm{B_17_8}+\frac{\mathrm{a51}\mathrm{B_21_8}}{\mathrm{a61}}-\mathrm{B_17_12}+\frac{\left(-\mathrm{a41}-\mathrm{a51}+\mathrm{a21}-1\right)\mathrm{B_1_20}}{\mathrm{a11}}+\mathrm{B_5_20}-\mathrm{B_13_20}+\mathrm{B_17_20}-\frac{\mathrm{a51}\mathrm{B_5_24}}{\mathrm{a21}}-\mathrm{B_17_24}\\ \mathrm{B_18_5}+\frac{\mathrm{a51}\mathrm{B_22_5}}{\mathrm{a61}}-\mathrm{B_18_9}+\frac{\left(-\mathrm{a41}-\mathrm{a51}+\mathrm{a21}-1\right)\mathrm{B_2_17}}{\mathrm{a11}}+\mathrm{B_6_17}-\mathrm{B_14_17}+\mathrm{B_18_17}-\frac{\mathrm{a51}\mathrm{B_6_21}}{\mathrm{a21}}-\mathrm{B_18_21}& \mathrm{B_18_6}+\frac{\mathrm{a51}\mathrm{B_22_6}}{\mathrm{a61}}-\mathrm{B_18_10}+\frac{\left(-\mathrm{a41}-\mathrm{a51}+\mathrm{a21}-1\right)\mathrm{B_2_18}}{\mathrm{a11}}+\mathrm{B_6_18}-\mathrm{B_14_18}+\mathrm{B_18_18}-\frac{\mathrm{a51}\mathrm{B_6_22}}{\mathrm{a21}}-\mathrm{B_18_22}& \mathrm{B_18_7}+\frac{\mathrm{a51}\mathrm{B_22_7}}{\mathrm{a61}}-\mathrm{B_18_11}+\frac{\left(-\mathrm{a41}-\mathrm{a51}+\mathrm{a21}-1\right)\mathrm{B_2_19}}{\mathrm{a11}}+\mathrm{B_6_19}-\mathrm{B_14_19}+\mathrm{B_18_19}-\frac{\mathrm{a51}\mathrm{B_6_23}}{\mathrm{a21}}-\mathrm{B_18_23}& \mathrm{B_18_8}+\frac{\mathrm{a51}\mathrm{B_22_8}}{\mathrm{a61}}-\mathrm{B_18_12}+\frac{\left(-\mathrm{a41}-\mathrm{a51}+\mathrm{a21}-1\right)\mathrm{B_2_20}}{\mathrm{a11}}+\mathrm{B_6_20}-\mathrm{B_14_20}+\mathrm{B_18_20}-\frac{\mathrm{a51}\mathrm{B_6_24}}{\mathrm{a21}}-\mathrm{B_18_24}\\ \mathrm{B_19_5}+\frac{\mathrm{a51}\mathrm{B_23_5}}{\mathrm{a61}}-\mathrm{B_19_9}+\frac{\left(-\mathrm{a41}-\mathrm{a51}+\mathrm{a21}-1\right)\mathrm{B_3_17}}{\mathrm{a11}}+\mathrm{B_7_17}-\mathrm{B_15_17}+\mathrm{B_19_17}-\frac{\mathrm{a51}\mathrm{B_7_21}}{\mathrm{a21}}-\mathrm{B_19_21}& \mathrm{B_19_6}+\frac{\mathrm{a51}\mathrm{B_23_6}}{\mathrm{a61}}-\mathrm{B_19_10}+\frac{\left(-\mathrm{a41}-\mathrm{a51}+\mathrm{a21}-1\right)\mathrm{B_3_18}}{\mathrm{a11}}+\mathrm{B_7_18}-\mathrm{B_15_18}+\mathrm{B_19_18}-\frac{\mathrm{a51}\mathrm{B_7_22}}{\mathrm{a21}}-\mathrm{B_19_22}& \mathrm{B_19_7}+\frac{\mathrm{a51}\mathrm{B_23_7}}{\mathrm{a61}}-\mathrm{B_19_11}+\frac{\left(-\mathrm{a41}-\mathrm{a51}+\mathrm{a21}-1\right)\mathrm{B_3_19}}{\mathrm{a11}}+\mathrm{B_7_19}-\mathrm{B_15_19}+\mathrm{B_19_19}-\frac{\mathrm{a51}\mathrm{B_7_23}}{\mathrm{a21}}-\mathrm{B_19_23}& \mathrm{B_19_8}+\frac{\mathrm{a51}\mathrm{B_23_8}}{\mathrm{a61}}-\mathrm{B_19_12}+\frac{\left(-\mathrm{a41}-\mathrm{a51}+\mathrm{a21}-1\right)\mathrm{B_3_20}}{\mathrm{a11}}+\mathrm{B_7_20}-\mathrm{B_15_20}+\mathrm{B_19_20}-\frac{\mathrm{a51}\mathrm{B_7_24}}{\mathrm{a21}}-\mathrm{B_19_24}\\ \mathrm{B_20_5}+\frac{\mathrm{a51}\mathrm{B_24_5}}{\mathrm{a61}}-\mathrm{B_20_9}+\frac{\left(-\mathrm{a41}-\mathrm{a51}+\mathrm{a21}-1\right)\mathrm{B_4_17}}{\mathrm{a11}}+\mathrm{B_8_17}-\mathrm{B_16_17}+\mathrm{B_20_17}-\frac{\mathrm{a51}\mathrm{B_8_21}}{\mathrm{a21}}-\mathrm{B_20_21}& \mathrm{B_20_6}+\frac{\mathrm{a51}\mathrm{B_24_6}}{\mathrm{a61}}-\mathrm{B_20_10}+\frac{\left(-\mathrm{a41}-\mathrm{a51}+\mathrm{a21}-1\right)\mathrm{B_4_18}}{\mathrm{a11}}+\mathrm{B_8_18}-\mathrm{B_16_18}+\mathrm{B_20_18}-\frac{\mathrm{a51}\mathrm{B_8_22}}{\mathrm{a21}}-\mathrm{B_20_22}& \mathrm{B_20_7}+\frac{\mathrm{a51}\mathrm{B_24_7}}{\mathrm{a61}}-\mathrm{B_20_11}+\frac{\left(-\mathrm{a41}-\mathrm{a51}+\mathrm{a21}-1\right)\mathrm{B_4_19}}{\mathrm{a11}}+\mathrm{B_8_19}-\mathrm{B_16_19}+\mathrm{B_20_19}-\frac{\mathrm{a51}\mathrm{B_8_23}}{\mathrm{a21}}-\mathrm{B_20_23}& \mathrm{B_20_8}+\frac{\mathrm{a51}\mathrm{B_24_8}}{\mathrm{a61}}-\mathrm{B_20_12}+\frac{\left(-\mathrm{a41}-\mathrm{a51}+\mathrm{a21}-1\right)\mathrm{B_4_20}}{\mathrm{a11}}+\mathrm{B_8_20}-\mathrm{B_16_20}+\mathrm{B_20_20}-\frac{\mathrm{a51}\mathrm{B_8_24}}{\mathrm{a21}}-\mathrm{B_20_24}\end{array}\right),\left(\begin{array}{c}\mathrm{C_17_1}+\mathrm{C_17_3}\\ \mathrm{C_18_1}+\mathrm{C_18_3}\\ \mathrm{C_19_1}+\mathrm{C_19_3}\\ \mathrm{C_20_1}+\mathrm{C_20_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_1_21}& \mathrm{A_1_22}& \mathrm{A_1_23}& \mathrm{A_1_24}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_21_9}-\frac{\mathrm{a61}\mathrm{B_1_17}}{\mathrm{a11}}-\mathrm{B_21_17}-\mathrm{B_1_21}-\frac{\left(\mathrm{a11}-\mathrm{a31}-\mathrm{a41}+\mathrm{a61}-1\right)\mathrm{B_5_21}}{\mathrm{a21}}+\mathrm{B_9_21}-\mathrm{B_13_21}+\mathrm{B_21_21}& \mathrm{B_21_10}-\frac{\mathrm{a61}\mathrm{B_1_18}}{\mathrm{a11}}-\mathrm{B_21_18}-\mathrm{B_1_22}-\frac{\left(\mathrm{a11}-\mathrm{a31}-\mathrm{a41}+\mathrm{a61}-1\right)\mathrm{B_5_22}}{\mathrm{a21}}+\mathrm{B_9_22}-\mathrm{B_13_22}+\mathrm{B_21_22}& \mathrm{B_21_11}-\frac{\mathrm{a61}\mathrm{B_1_19}}{\mathrm{a11}}-\mathrm{B_21_19}-\mathrm{B_1_23}-\frac{\left(\mathrm{a11}-\mathrm{a31}-\mathrm{a41}+\mathrm{a61}-1\right)\mathrm{B_5_23}}{\mathrm{a21}}+\mathrm{B_9_23}-\mathrm{B_13_23}+\mathrm{B_21_23}& \mathrm{B_21_12}-\frac{\mathrm{a61}\mathrm{B_1_20}}{\mathrm{a11}}-\mathrm{B_21_20}-\mathrm{B_1_24}-\frac{\left(\mathrm{a11}-\mathrm{a31}-\mathrm{a41}+\mathrm{a61}-1\right)\mathrm{B_5_24}}{\mathrm{a21}}+\mathrm{B_9_24}-\mathrm{B_13_24}+\mathrm{B_21_24}\\ \mathrm{B_22_9}-\frac{\mathrm{a61}\mathrm{B_2_17}}{\mathrm{a11}}-\mathrm{B_22_17}-\mathrm{B_2_21}-\frac{\left(\mathrm{a11}-\mathrm{a31}-\mathrm{a41}+\mathrm{a61}-1\right)\mathrm{B_6_21}}{\mathrm{a21}}+\mathrm{B_10_21}-\mathrm{B_14_21}+\mathrm{B_22_21}& \mathrm{B_22_10}-\frac{\mathrm{a61}\mathrm{B_2_18}}{\mathrm{a11}}-\mathrm{B_22_18}-\mathrm{B_2_22}-\frac{\left(\mathrm{a11}-\mathrm{a31}-\mathrm{a41}+\mathrm{a61}-1\right)\mathrm{B_6_22}}{\mathrm{a21}}+\mathrm{B_10_22}-\mathrm{B_14_22}+\mathrm{B_22_22}& \mathrm{B_22_11}-\frac{\mathrm{a61}\mathrm{B_2_19}}{\mathrm{a11}}-\mathrm{B_22_19}-\mathrm{B_2_23}-\frac{\left(\mathrm{a11}-\mathrm{a31}-\mathrm{a41}+\mathrm{a61}-1\right)\mathrm{B_6_23}}{\mathrm{a21}}+\mathrm{B_10_23}-\mathrm{B_14_23}+\mathrm{B_22_23}& \mathrm{B_22_12}-\frac{\mathrm{a61}\mathrm{B_2_20}}{\mathrm{a11}}-\mathrm{B_22_20}-\mathrm{B_2_24}-\frac{\left(\mathrm{a11}-\mathrm{a31}-\mathrm{a41}+\mathrm{a61}-1\right)\mathrm{B_6_24}}{\mathrm{a21}}+\mathrm{B_10_24}-\mathrm{B_14_24}+\mathrm{B_22_24}\\ \mathrm{B_23_9}-\frac{\mathrm{a61}\mathrm{B_3_17}}{\mathrm{a11}}-\mathrm{B_23_17}-\mathrm{B_3_21}-\frac{\left(\mathrm{a11}-\mathrm{a31}-\mathrm{a41}+\mathrm{a61}-1\right)\mathrm{B_7_21}}{\mathrm{a21}}+\mathrm{B_11_21}-\mathrm{B_15_21}+\mathrm{B_23_21}& \mathrm{B_23_10}-\frac{\mathrm{a61}\mathrm{B_3_18}}{\mathrm{a11}}-\mathrm{B_23_18}-\mathrm{B_3_22}-\frac{\left(\mathrm{a11}-\mathrm{a31}-\mathrm{a41}+\mathrm{a61}-1\right)\mathrm{B_7_22}}{\mathrm{a21}}+\mathrm{B_11_22}-\mathrm{B_15_22}+\mathrm{B_23_22}& \mathrm{B_23_11}-\frac{\mathrm{a61}\mathrm{B_3_19}}{\mathrm{a11}}-\mathrm{B_23_19}-\mathrm{B_3_23}-\frac{\left(\mathrm{a11}-\mathrm{a31}-\mathrm{a41}+\mathrm{a61}-1\right)\mathrm{B_7_23}}{\mathrm{a21}}+\mathrm{B_11_23}-\mathrm{B_15_23}+\mathrm{B_23_23}& \mathrm{B_23_12}-\frac{\mathrm{a61}\mathrm{B_3_20}}{\mathrm{a11}}-\mathrm{B_23_20}-\mathrm{B_3_24}-\frac{\left(\mathrm{a11}-\mathrm{a31}-\mathrm{a41}+\mathrm{a61}-1\right)\mathrm{B_7_24}}{\mathrm{a21}}+\mathrm{B_11_24}-\mathrm{B_15_24}+\mathrm{B_23_24}\\ \mathrm{B_24_9}-\frac{\mathrm{a61}\mathrm{B_4_17}}{\mathrm{a11}}-\mathrm{B_24_17}-\mathrm{B_4_21}-\frac{\left(\mathrm{a11}-\mathrm{a31}-\mathrm{a41}+\mathrm{a61}-1\right)\mathrm{B_8_21}}{\mathrm{a21}}+\mathrm{B_12_21}-\mathrm{B_16_21}+\mathrm{B_24_21}& \mathrm{B_24_10}-\frac{\mathrm{a61}\mathrm{B_4_18}}{\mathrm{a11}}-\mathrm{B_24_18}-\mathrm{B_4_22}-\frac{\left(\mathrm{a11}-\mathrm{a31}-\mathrm{a41}+\mathrm{a61}-1\right)\mathrm{B_8_22}}{\mathrm{a21}}+\mathrm{B_12_22}-\mathrm{B_16_22}+\mathrm{B_24_22}& \mathrm{B_24_11}-\frac{\mathrm{a61}\mathrm{B_4_19}}{\mathrm{a11}}-\mathrm{B_24_19}-\mathrm{B_4_23}-\frac{\left(\mathrm{a11}-\mathrm{a31}-\mathrm{a41}+\mathrm{a61}-1\right)\mathrm{B_8_23}}{\mathrm{a21}}+\mathrm{B_12_23}-\mathrm{B_16_23}+\mathrm{B_24_23}& \mathrm{B_24_12}-\frac{\mathrm{a61}\mathrm{B_4_20}}{\mathrm{a11}}-\mathrm{B_24_20}-\mathrm{B_4_24}-\frac{\left(\mathrm{a11}-\mathrm{a31}-\mathrm{a41}+\mathrm{a61}-1\right)\mathrm{B_8_24}}{\mathrm{a21}}+\mathrm{B_12_24}-\mathrm{B_16_24}+\mathrm{B_24_24}\end{array}\right),\left(\begin{array}{c}\mathrm{C_21_1}\\ \mathrm{C_22_1}\\ \mathrm{C_23_1}\\ \mathrm{C_24_1}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_2_21}& \mathrm{A_2_22}& \mathrm{A_2_23}& \mathrm{A_2_24}\\ \mathrm{A_3_21}& \mathrm{A_3_22}& \mathrm{A_3_23}& \mathrm{A_3_24}\end{array}\right),\left(\begin{array}{cccc}-\frac{\mathrm{a61}\mathrm{B_17_1}}{\mathrm{a51}}-\mathrm{B_21_1}+\mathrm{B_21_9}-\mathrm{B_21_13}+\frac{\left(-\mathrm{a51}-\mathrm{a61}+\mathrm{a31}\right)\mathrm{B_5_21}}{\mathrm{a21}}+\mathrm{B_9_21}-\mathrm{B_17_21}+\mathrm{B_21_21}+\frac{\mathrm{a61}\mathrm{B_13_25}}{\mathrm{a41}}-\mathrm{B_21_25}& -\frac{\mathrm{a61}\mathrm{B_17_2}}{\mathrm{a51}}-\mathrm{B_21_2}+\mathrm{B_21_10}-\mathrm{B_21_14}+\frac{\left(-\mathrm{a51}-\mathrm{a61}+\mathrm{a31}\right)\mathrm{B_5_22}}{\mathrm{a21}}+\mathrm{B_9_22}-\mathrm{B_17_22}+\mathrm{B_21_22}+\frac{\mathrm{a61}\mathrm{B_13_26}}{\mathrm{a41}}-\mathrm{B_21_26}& -\frac{\mathrm{a61}\mathrm{B_17_3}}{\mathrm{a51}}-\mathrm{B_21_3}+\mathrm{B_21_11}-\mathrm{B_21_15}+\frac{\left(-\mathrm{a51}-\mathrm{a61}+\mathrm{a31}\right)\mathrm{B_5_23}}{\mathrm{a21}}+\mathrm{B_9_23}-\mathrm{B_17_23}+\mathrm{B_21_23}+\frac{\mathrm{a61}\mathrm{B_13_27}}{\mathrm{a41}}-\mathrm{B_21_27}& -\frac{\mathrm{a61}\mathrm{B_17_4}}{\mathrm{a51}}-\mathrm{B_21_4}+\mathrm{B_21_12}-\mathrm{B_21_16}+\frac{\left(-\mathrm{a51}-\mathrm{a61}+\mathrm{a31}\right)\mathrm{B_5_24}}{\mathrm{a21}}+\mathrm{B_9_24}-\mathrm{B_17_24}+\mathrm{B_21_24}+\frac{\mathrm{a61}\mathrm{B_13_28}}{\mathrm{a41}}-\mathrm{B_21_28}\\ -\frac{\mathrm{a61}\mathrm{B_18_1}}{\mathrm{a51}}-\mathrm{B_22_1}+\mathrm{B_22_9}-\mathrm{B_22_13}+\frac{\left(-\mathrm{a51}-\mathrm{a61}+\mathrm{a31}\right)\mathrm{B_6_21}}{\mathrm{a21}}+\mathrm{B_10_21}-\mathrm{B_18_21}+\mathrm{B_22_21}+\frac{\mathrm{a61}\mathrm{B_14_25}}{\mathrm{a41}}-\mathrm{B_22_25}& -\frac{\mathrm{a61}\mathrm{B_18_2}}{\mathrm{a51}}-\mathrm{B_22_2}+\mathrm{B_22_10}-\mathrm{B_22_14}+\frac{\left(-\mathrm{a51}-\mathrm{a61}+\mathrm{a31}\right)\mathrm{B_6_22}}{\mathrm{a21}}+\mathrm{B_10_22}-\mathrm{B_18_22}+\mathrm{B_22_22}+\frac{\mathrm{a61}\mathrm{B_14_26}}{\mathrm{a41}}-\mathrm{B_22_26}& -\frac{\mathrm{a61}\mathrm{B_18_3}}{\mathrm{a51}}-\mathrm{B_22_3}+\mathrm{B_22_11}-\mathrm{B_22_15}+\frac{\left(-\mathrm{a51}-\mathrm{a61}+\mathrm{a31}\right)\mathrm{B_6_23}}{\mathrm{a21}}+\mathrm{B_10_23}-\mathrm{B_18_23}+\mathrm{B_22_23}+\frac{\mathrm{a61}\mathrm{B_14_27}}{\mathrm{a41}}-\mathrm{B_22_27}& -\frac{\mathrm{a61}\mathrm{B_18_4}}{\mathrm{a51}}-\mathrm{B_22_4}+\mathrm{B_22_12}-\mathrm{B_22_16}+\frac{\left(-\mathrm{a51}-\mathrm{a61}+\mathrm{a31}\right)\mathrm{B_6_24}}{\mathrm{a21}}+\mathrm{B_10_24}-\mathrm{B_18_24}+\mathrm{B_22_24}+\frac{\mathrm{a61}\mathrm{B_14_28}}{\mathrm{a41}}-\mathrm{B_22_28}\\ -\frac{\mathrm{a61}\mathrm{B_19_1}}{\mathrm{a51}}-\mathrm{B_23_1}+\mathrm{B_23_9}-\mathrm{B_23_13}+\frac{\left(-\mathrm{a51}-\mathrm{a61}+\mathrm{a31}\right)\mathrm{B_7_21}}{\mathrm{a21}}+\mathrm{B_11_21}-\mathrm{B_19_21}+\mathrm{B_23_21}+\frac{\mathrm{a61}\mathrm{B_15_25}}{\mathrm{a41}}-\mathrm{B_23_25}& -\frac{\mathrm{a61}\mathrm{B_19_2}}{\mathrm{a51}}-\mathrm{B_23_2}+\mathrm{B_23_10}-\mathrm{B_23_14}+\frac{\left(-\mathrm{a51}-\mathrm{a61}+\mathrm{a31}\right)\mathrm{B_7_22}}{\mathrm{a21}}+\mathrm{B_11_22}-\mathrm{B_19_22}+\mathrm{B_23_22}+\frac{\mathrm{a61}\mathrm{B_15_26}}{\mathrm{a41}}-\mathrm{B_23_26}& -\frac{\mathrm{a61}\mathrm{B_19_3}}{\mathrm{a51}}-\mathrm{B_23_3}+\mathrm{B_23_11}-\mathrm{B_23_15}+\frac{\left(-\mathrm{a51}-\mathrm{a61}+\mathrm{a31}\right)\mathrm{B_7_23}}{\mathrm{a21}}+\mathrm{B_11_23}-\mathrm{B_19_23}+\mathrm{B_23_23}+\frac{\mathrm{a61}\mathrm{B_15_27}}{\mathrm{a41}}-\mathrm{B_23_27}& -\frac{\mathrm{a61}\mathrm{B_19_4}}{\mathrm{a51}}-\mathrm{B_23_4}+\mathrm{B_23_12}-\mathrm{B_23_16}+\frac{\left(-\mathrm{a51}-\mathrm{a61}+\mathrm{a31}\right)\mathrm{B_7_24}}{\mathrm{a21}}+\mathrm{B_11_24}-\mathrm{B_19_24}+\mathrm{B_23_24}+\frac{\mathrm{a61}\mathrm{B_15_28}}{\mathrm{a41}}-\mathrm{B_23_28}\\ -\frac{\mathrm{a61}\mathrm{B_20_1}}{\mathrm{a51}}-\mathrm{B_24_1}+\mathrm{B_24_9}-\mathrm{B_24_13}+\frac{\left(-\mathrm{a51}-\mathrm{a61}+\mathrm{a31}\right)\mathrm{B_8_21}}{\mathrm{a21}}+\mathrm{B_12_21}-\mathrm{B_20_21}+\mathrm{B_24_21}+\frac{\mathrm{a61}\mathrm{B_16_25}}{\mathrm{a41}}-\mathrm{B_24_25}& -\frac{\mathrm{a61}\mathrm{B_20_2}}{\mathrm{a51}}-\mathrm{B_24_2}+\mathrm{B_24_10}-\mathrm{B_24_14}+\frac{\left(-\mathrm{a51}-\mathrm{a61}+\mathrm{a31}\right)\mathrm{B_8_22}}{\mathrm{a21}}+\mathrm{B_12_22}-\mathrm{B_20_22}+\mathrm{B_24_22}+\frac{\mathrm{a61}\mathrm{B_16_26}}{\mathrm{a41}}-\mathrm{B_24_26}& -\frac{\mathrm{a61}\mathrm{B_20_3}}{\mathrm{a51}}-\mathrm{B_24_3}+\mathrm{B_24_11}-\mathrm{B_24_15}+\frac{\left(-\mathrm{a51}-\mathrm{a61}+\mathrm{a31}\right)\mathrm{B_8_23}}{\mathrm{a21}}+\mathrm{B_12_23}-\mathrm{B_20_23}+\mathrm{B_24_23}+\frac{\mathrm{a61}\mathrm{B_16_27}}{\mathrm{a41}}-\mathrm{B_24_27}& -\frac{\mathrm{a61}\mathrm{B_20_4}}{\mathrm{a51}}-\mathrm{B_24_4}+\mathrm{B_24_12}-\mathrm{B_24_16}+\frac{\left(-\mathrm{a51}-\mathrm{a61}+\mathrm{a31}\right)\mathrm{B_8_24}}{\mathrm{a21}}+\mathrm{B_12_24}-\mathrm{B_20_24}+\mathrm{B_24_24}+\frac{\mathrm{a61}\mathrm{B_16_28}}{\mathrm{a41}}-\mathrm{B_24_28}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_21_2}& \mathrm{C_21_3}\\ \mathrm{C_22_2}& \mathrm{C_22_3}\\ \mathrm{C_23_2}& \mathrm{C_23_3}\\ \mathrm{C_24_2}& \mathrm{C_24_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_1_1}+\mathrm{A_1_5}& \mathrm{A_1_2}+\mathrm{A_1_6}& \mathrm{A_1_3}+\mathrm{A_1_7}& \mathrm{A_1_4}+\mathrm{A_1_8}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_13_1}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_17_1}}{\mathrm{a51}}+\mathrm{B_1_5}+\frac{\mathrm{a11}\mathrm{B_21_5}}{\mathrm{a61}}& \mathrm{B_13_2}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_17_2}}{\mathrm{a51}}+\mathrm{B_1_6}+\frac{\mathrm{a11}\mathrm{B_21_6}}{\mathrm{a61}}& \mathrm{B_13_3}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_17_3}}{\mathrm{a51}}+\mathrm{B_1_7}+\frac{\mathrm{a11}\mathrm{B_21_7}}{\mathrm{a61}}& \mathrm{B_13_4}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_17_4}}{\mathrm{a51}}+\mathrm{B_1_8}+\frac{\mathrm{a11}\mathrm{B_21_8}}{\mathrm{a61}}\\ \mathrm{B_14_1}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_18_1}}{\mathrm{a51}}+\mathrm{B_2_5}+\frac{\mathrm{a11}\mathrm{B_22_5}}{\mathrm{a61}}& \mathrm{B_14_2}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_18_2}}{\mathrm{a51}}+\mathrm{B_2_6}+\frac{\mathrm{a11}\mathrm{B_22_6}}{\mathrm{a61}}& \mathrm{B_14_3}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_18_3}}{\mathrm{a51}}+\mathrm{B_2_7}+\frac{\mathrm{a11}\mathrm{B_22_7}}{\mathrm{a61}}& \mathrm{B_14_4}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_18_4}}{\mathrm{a51}}+\mathrm{B_2_8}+\frac{\mathrm{a11}\mathrm{B_22_8}}{\mathrm{a61}}\\ \mathrm{B_15_1}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_19_1}}{\mathrm{a51}}+\mathrm{B_3_5}+\frac{\mathrm{a11}\mathrm{B_23_5}}{\mathrm{a61}}& \mathrm{B_15_2}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_19_2}}{\mathrm{a51}}+\mathrm{B_3_6}+\frac{\mathrm{a11}\mathrm{B_23_6}}{\mathrm{a61}}& \mathrm{B_15_3}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_19_3}}{\mathrm{a51}}+\mathrm{B_3_7}+\frac{\mathrm{a11}\mathrm{B_23_7}}{\mathrm{a61}}& \mathrm{B_15_4}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_19_4}}{\mathrm{a51}}+\mathrm{B_3_8}+\frac{\mathrm{a11}\mathrm{B_23_8}}{\mathrm{a61}}\\ \mathrm{B_16_1}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_20_1}}{\mathrm{a51}}+\mathrm{B_4_5}+\frac{\mathrm{a11}\mathrm{B_24_5}}{\mathrm{a61}}& \mathrm{B_16_2}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_20_2}}{\mathrm{a51}}+\mathrm{B_4_6}+\frac{\mathrm{a11}\mathrm{B_24_6}}{\mathrm{a61}}& \mathrm{B_16_3}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_20_3}}{\mathrm{a51}}+\mathrm{B_4_7}+\frac{\mathrm{a11}\mathrm{B_24_7}}{\mathrm{a61}}& \mathrm{B_16_4}+\frac{\left(\mathrm{a41}+1\right)\mathrm{B_20_4}}{\mathrm{a51}}+\mathrm{B_4_8}+\frac{\mathrm{a11}\mathrm{B_24_8}}{\mathrm{a61}}\end{array}\right),\left(\begin{array}{c}\mathrm{C_1_1}+\mathrm{C_5_1}\\ \mathrm{C_2_1}+\mathrm{C_6_1}\\ \mathrm{C_3_1}+\mathrm{C_7_1}\\ \mathrm{C_4_1}+\mathrm{C_8_1}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_1_1}+\mathrm{A_1_9}& \mathrm{A_1_2}+\mathrm{A_1_10}& \mathrm{A_1_3}+\mathrm{A_1_11}& \mathrm{A_1_4}+\mathrm{A_1_12}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_1_9}& \mathrm{B_1_10}& \mathrm{B_1_11}& \mathrm{B_1_12}\\ \mathrm{B_2_9}& \mathrm{B_2_10}& \mathrm{B_2_11}& \mathrm{B_2_12}\\ \mathrm{B_3_9}& \mathrm{B_3_10}& \mathrm{B_3_11}& \mathrm{B_3_12}\\ \mathrm{B_4_9}& \mathrm{B_4_10}& \mathrm{B_4_11}& \mathrm{B_4_12}\end{array}\right),\left(\begin{array}{c}\mathrm{C_1_3}+\mathrm{C_9_3}+\mathrm{C_1_1}+\mathrm{C_9_1}\\ \mathrm{C_2_3}+\mathrm{C_10_3}+\mathrm{C_2_1}+\mathrm{C_10_1}\\ \mathrm{C_3_3}+\mathrm{C_11_3}+\mathrm{C_3_1}+\mathrm{C_11_1}\\ \mathrm{C_4_1}+\mathrm{C_12_1}+\mathrm{C_4_3}+\mathrm{C_12_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_1_1}+\mathrm{A_1_21}& \mathrm{A_1_2}+\mathrm{A_1_22}& \mathrm{A_1_3}+\mathrm{A_1_23}& \mathrm{A_1_4}+\mathrm{A_1_24}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_1_21}+\frac{\mathrm{a11}\mathrm{B_5_21}}{\mathrm{a21}}& \mathrm{B_1_22}+\frac{\mathrm{a11}\mathrm{B_5_22}}{\mathrm{a21}}& \mathrm{B_1_23}+\frac{\mathrm{a11}\mathrm{B_5_23}}{\mathrm{a21}}& \mathrm{B_1_24}+\frac{\mathrm{a11}\mathrm{B_5_24}}{\mathrm{a21}}\\ \mathrm{B_2_21}+\frac{\mathrm{a11}\mathrm{B_6_21}}{\mathrm{a21}}& \mathrm{B_2_22}+\frac{\mathrm{a11}\mathrm{B_6_22}}{\mathrm{a21}}& \mathrm{B_2_23}+\frac{\mathrm{a11}\mathrm{B_6_23}}{\mathrm{a21}}& \mathrm{B_2_24}+\frac{\mathrm{a11}\mathrm{B_6_24}}{\mathrm{a21}}\\ \mathrm{B_3_21}+\frac{\mathrm{a11}\mathrm{B_7_21}}{\mathrm{a21}}& \mathrm{B_3_22}+\frac{\mathrm{a11}\mathrm{B_7_22}}{\mathrm{a21}}& \mathrm{B_3_23}+\frac{\mathrm{a11}\mathrm{B_7_23}}{\mathrm{a21}}& \mathrm{B_3_24}+\frac{\mathrm{a11}\mathrm{B_7_24}}{\mathrm{a21}}\\ \mathrm{B_4_21}+\frac{\mathrm{a11}\mathrm{B_8_21}}{\mathrm{a21}}& \mathrm{B_4_22}+\frac{\mathrm{a11}\mathrm{B_8_22}}{\mathrm{a21}}& \mathrm{B_4_23}+\frac{\mathrm{a11}\mathrm{B_8_23}}{\mathrm{a21}}& \mathrm{B_4_24}+\frac{\mathrm{a11}\mathrm{B_8_24}}{\mathrm{a21}}\end{array}\right),\left(\begin{array}{c}\mathrm{C_1_1}+\mathrm{C_21_1}+\mathrm{C_1_3}+\mathrm{C_21_3}\\ \mathrm{C_2_1}+\mathrm{C_22_1}+\mathrm{C_2_3}+\mathrm{C_22_3}\\ \mathrm{C_3_1}+\mathrm{C_23_1}+\mathrm{C_3_3}+\mathrm{C_23_3}\\ \mathrm{C_4_1}+\mathrm{C_24_1}+\mathrm{C_4_3}+\mathrm{C_24_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_1_1}-\mathrm{A_3_1}& \mathrm{A_1_2}-\mathrm{A_3_2}& \mathrm{A_1_3}-\mathrm{A_3_3}& \mathrm{A_1_4}-\mathrm{A_3_4}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_1_1}-\mathrm{B_9_1}-\frac{\left(\mathrm{a11}-\mathrm{a31}+\mathrm{a61}\right)\mathrm{B_17_1}}{\mathrm{a51}}-\mathrm{B_21_1}-\mathrm{B_1_5}-\frac{\mathrm{a11}\mathrm{B_21_5}}{\mathrm{a61}}& \mathrm{B_1_2}-\mathrm{B_9_2}-\frac{\left(\mathrm{a11}-\mathrm{a31}+\mathrm{a61}\right)\mathrm{B_17_2}}{\mathrm{a51}}-\mathrm{B_21_2}-\mathrm{B_1_6}-\frac{\mathrm{a11}\mathrm{B_21_6}}{\mathrm{a61}}& \mathrm{B_1_3}-\mathrm{B_9_3}-\frac{\left(\mathrm{a11}-\mathrm{a31}+\mathrm{a61}\right)\mathrm{B_17_3}}{\mathrm{a51}}-\mathrm{B_21_3}-\mathrm{B_1_7}-\frac{\mathrm{a11}\mathrm{B_21_7}}{\mathrm{a61}}& \mathrm{B_1_4}-\mathrm{B_9_4}-\frac{\left(\mathrm{a11}-\mathrm{a31}+\mathrm{a61}\right)\mathrm{B_17_4}}{\mathrm{a51}}-\mathrm{B_21_4}-\mathrm{B_1_8}-\frac{\mathrm{a11}\mathrm{B_21_8}}{\mathrm{a61}}\\ \mathrm{B_2_1}-\mathrm{B_10_1}-\frac{\left(\mathrm{a11}-\mathrm{a31}+\mathrm{a61}\right)\mathrm{B_18_1}}{\mathrm{a51}}-\mathrm{B_22_1}-\mathrm{B_2_5}-\frac{\mathrm{a11}\mathrm{B_22_5}}{\mathrm{a61}}& \mathrm{B_2_2}-\mathrm{B_10_2}-\frac{\left(\mathrm{a11}-\mathrm{a31}+\mathrm{a61}\right)\mathrm{B_18_2}}{\mathrm{a51}}-\mathrm{B_22_2}-\mathrm{B_2_6}-\frac{\mathrm{a11}\mathrm{B_22_6}}{\mathrm{a61}}& \mathrm{B_2_3}-\mathrm{B_10_3}-\frac{\left(\mathrm{a11}-\mathrm{a31}+\mathrm{a61}\right)\mathrm{B_18_3}}{\mathrm{a51}}-\mathrm{B_22_3}-\mathrm{B_2_7}-\frac{\mathrm{a11}\mathrm{B_22_7}}{\mathrm{a61}}& \mathrm{B_2_4}-\mathrm{B_10_4}-\frac{\left(\mathrm{a11}-\mathrm{a31}+\mathrm{a61}\right)\mathrm{B_18_4}}{\mathrm{a51}}-\mathrm{B_22_4}-\mathrm{B_2_8}-\frac{\mathrm{a11}\mathrm{B_22_8}}{\mathrm{a61}}\\ \mathrm{B_3_1}-\mathrm{B_11_1}-\frac{\left(\mathrm{a11}-\mathrm{a31}+\mathrm{a61}\right)\mathrm{B_19_1}}{\mathrm{a51}}-\mathrm{B_23_1}-\mathrm{B_3_5}-\frac{\mathrm{a11}\mathrm{B_23_5}}{\mathrm{a61}}& \mathrm{B_3_2}-\mathrm{B_11_2}-\frac{\left(\mathrm{a11}-\mathrm{a31}+\mathrm{a61}\right)\mathrm{B_19_2}}{\mathrm{a51}}-\mathrm{B_23_2}-\mathrm{B_3_6}-\frac{\mathrm{a11}\mathrm{B_23_6}}{\mathrm{a61}}& \mathrm{B_3_3}-\mathrm{B_11_3}-\frac{\left(\mathrm{a11}-\mathrm{a31}+\mathrm{a61}\right)\mathrm{B_19_3}}{\mathrm{a51}}-\mathrm{B_23_3}-\mathrm{B_3_7}-\frac{\mathrm{a11}\mathrm{B_23_7}}{\mathrm{a61}}& \mathrm{B_3_4}-\mathrm{B_11_4}-\frac{\left(\mathrm{a11}-\mathrm{a31}+\mathrm{a61}\right)\mathrm{B_19_4}}{\mathrm{a51}}-\mathrm{B_23_4}-\mathrm{B_3_8}-\frac{\mathrm{a11}\mathrm{B_23_8}}{\mathrm{a61}}\\ \mathrm{B_4_1}-\mathrm{B_12_1}-\frac{\left(\mathrm{a11}-\mathrm{a31}+\mathrm{a61}\right)\mathrm{B_20_1}}{\mathrm{a51}}-\mathrm{B_24_1}-\mathrm{B_4_5}-\frac{\mathrm{a11}\mathrm{B_24_5}}{\mathrm{a61}}& \mathrm{B_4_2}-\mathrm{B_12_2}-\frac{\left(\mathrm{a11}-\mathrm{a31}+\mathrm{a61}\right)\mathrm{B_20_2}}{\mathrm{a51}}-\mathrm{B_24_2}-\mathrm{B_4_6}-\frac{\mathrm{a11}\mathrm{B_24_6}}{\mathrm{a61}}& \mathrm{B_4_3}-\mathrm{B_12_3}-\frac{\left(\mathrm{a11}-\mathrm{a31}+\mathrm{a61}\right)\mathrm{B_20_3}}{\mathrm{a51}}-\mathrm{B_24_3}-\mathrm{B_4_7}-\frac{\mathrm{a11}\mathrm{B_24_7}}{\mathrm{a61}}& \mathrm{B_4_4}-\mathrm{B_12_4}-\frac{\left(\mathrm{a11}-\mathrm{a31}+\mathrm{a61}\right)\mathrm{B_20_4}}{\mathrm{a51}}-\mathrm{B_24_4}-\mathrm{B_4_8}-\frac{\mathrm{a11}\mathrm{B_24_8}}{\mathrm{a61}}\end{array}\right),\left(\begin{array}{c}\mathrm{C_1_1}\\ \mathrm{C_2_1}\\ \mathrm{C_3_1}\\ \mathrm{C_4_1}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_2_1}& \mathrm{A_2_2}& \mathrm{A_2_3}& \mathrm{A_2_4}\\ \mathrm{A_3_1}+\mathrm{A_1_5}& \mathrm{A_3_2}+\mathrm{A_1_6}& \mathrm{A_3_3}+\mathrm{A_1_7}& \mathrm{A_3_4}+\mathrm{A_1_8}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_5_1}+\frac{\mathrm{a21}\mathrm{B_17_1}}{\mathrm{a51}}-\mathrm{B_1_5}-\frac{\mathrm{a11}\mathrm{B_21_5}}{\mathrm{a61}}& \mathrm{B_5_2}+\frac{\mathrm{a21}\mathrm{B_17_2}}{\mathrm{a51}}-\mathrm{B_1_6}-\frac{\mathrm{a11}\mathrm{B_21_6}}{\mathrm{a61}}& \mathrm{B_5_3}+\frac{\mathrm{a21}\mathrm{B_17_3}}{\mathrm{a51}}-\mathrm{B_1_7}-\frac{\mathrm{a11}\mathrm{B_21_7}}{\mathrm{a61}}& \mathrm{B_5_4}+\frac{\mathrm{a21}\mathrm{B_17_4}}{\mathrm{a51}}-\mathrm{B_1_8}-\frac{\mathrm{a11}\mathrm{B_21_8}}{\mathrm{a61}}\\ \mathrm{B_6_1}+\frac{\mathrm{a21}\mathrm{B_18_1}}{\mathrm{a51}}-\mathrm{B_2_5}-\frac{\mathrm{a11}\mathrm{B_22_5}}{\mathrm{a61}}& \mathrm{B_6_2}+\frac{\mathrm{a21}\mathrm{B_18_2}}{\mathrm{a51}}-\mathrm{B_2_6}-\frac{\mathrm{a11}\mathrm{B_22_6}}{\mathrm{a61}}& \mathrm{B_6_3}+\frac{\mathrm{a21}\mathrm{B_18_3}}{\mathrm{a51}}-\mathrm{B_2_7}-\frac{\mathrm{a11}\mathrm{B_22_7}}{\mathrm{a61}}& \mathrm{B_6_4}+\frac{\mathrm{a21}\mathrm{B_18_4}}{\mathrm{a51}}-\mathrm{B_2_8}-\frac{\mathrm{a11}\mathrm{B_22_8}}{\mathrm{a61}}\\ \mathrm{B_7_1}+\frac{\mathrm{a21}\mathrm{B_19_1}}{\mathrm{a51}}-\mathrm{B_3_5}-\frac{\mathrm{a11}\mathrm{B_23_5}}{\mathrm{a61}}& \mathrm{B_7_2}+\frac{\mathrm{a21}\mathrm{B_19_2}}{\mathrm{a51}}-\mathrm{B_3_6}-\frac{\mathrm{a11}\mathrm{B_23_6}}{\mathrm{a61}}& \mathrm{B_7_3}+\frac{\mathrm{a21}\mathrm{B_19_3}}{\mathrm{a51}}-\mathrm{B_3_7}-\frac{\mathrm{a11}\mathrm{B_23_7}}{\mathrm{a61}}& \mathrm{B_7_4}+\frac{\mathrm{a21}\mathrm{B_19_4}}{\mathrm{a51}}-\mathrm{B_3_8}-\frac{\mathrm{a11}\mathrm{B_23_8}}{\mathrm{a61}}\\ \mathrm{B_8_1}+\frac{\mathrm{a21}\mathrm{B_20_1}}{\mathrm{a51}}-\mathrm{B_4_5}-\frac{\mathrm{a11}\mathrm{B_24_5}}{\mathrm{a61}}& \mathrm{B_8_2}+\frac{\mathrm{a21}\mathrm{B_20_2}}{\mathrm{a51}}-\mathrm{B_4_6}-\frac{\mathrm{a11}\mathrm{B_24_6}}{\mathrm{a61}}& \mathrm{B_8_3}+\frac{\mathrm{a21}\mathrm{B_20_3}}{\mathrm{a51}}-\mathrm{B_4_7}-\frac{\mathrm{a11}\mathrm{B_24_7}}{\mathrm{a61}}& \mathrm{B_8_4}+\frac{\mathrm{a21}\mathrm{B_20_4}}{\mathrm{a51}}-\mathrm{B_4_8}-\frac{\mathrm{a11}\mathrm{B_24_8}}{\mathrm{a61}}\end{array}\right),\left(\begin{array}{cc}-\mathrm{C_5_2}& \mathrm{C_1_1}-\mathrm{C_5_3}\\ -\mathrm{C_6_2}& \mathrm{C_2_1}-\mathrm{C_6_3}\\ -\mathrm{C_7_2}& \mathrm{C_3_1}-\mathrm{C_7_3}\\ -\mathrm{C_8_2}& \mathrm{C_4_1}-\mathrm{C_8_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_2_1}+\mathrm{A_2_5}& \mathrm{A_2_2}+\mathrm{A_2_6}& \mathrm{A_2_3}+\mathrm{A_2_7}& \mathrm{A_2_4}+\mathrm{A_2_8}\\ \mathrm{A_3_1}+\mathrm{A_3_5}& \mathrm{A_3_2}+\mathrm{A_3_6}& \mathrm{A_3_3}+\mathrm{A_3_7}& \mathrm{A_3_4}+\mathrm{A_3_8}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_5_1}+\frac{\mathrm{a21}\mathrm{B_17_1}}{\mathrm{a51}}+\mathrm{B_1_13}+\mathrm{B_1_25}+\frac{\mathrm{a11}\mathrm{B_13_25}}{\mathrm{a41}}& \mathrm{B_5_2}+\frac{\mathrm{a21}\mathrm{B_17_2}}{\mathrm{a51}}+\mathrm{B_1_14}+\mathrm{B_1_26}+\frac{\mathrm{a11}\mathrm{B_13_26}}{\mathrm{a41}}& \mathrm{B_5_3}+\frac{\mathrm{a21}\mathrm{B_17_3}}{\mathrm{a51}}+\mathrm{B_1_15}+\mathrm{B_1_27}+\frac{\mathrm{a11}\mathrm{B_13_27}}{\mathrm{a41}}& \mathrm{B_5_4}+\frac{\mathrm{a21}\mathrm{B_17_4}}{\mathrm{a51}}+\mathrm{B_1_16}+\mathrm{B_1_28}+\frac{\mathrm{a11}\mathrm{B_13_28}}{\mathrm{a41}}\\ \mathrm{B_6_1}+\frac{\mathrm{a21}\mathrm{B_18_1}}{\mathrm{a51}}+\mathrm{B_2_13}+\mathrm{B_2_25}+\frac{\mathrm{a11}\mathrm{B_14_25}}{\mathrm{a41}}& \mathrm{B_6_2}+\frac{\mathrm{a21}\mathrm{B_18_2}}{\mathrm{a51}}+\mathrm{B_2_14}+\mathrm{B_2_26}+\frac{\mathrm{a11}\mathrm{B_14_26}}{\mathrm{a41}}& \mathrm{B_6_3}+\frac{\mathrm{a21}\mathrm{B_18_3}}{\mathrm{a51}}+\mathrm{B_2_15}+\mathrm{B_2_27}+\frac{\mathrm{a11}\mathrm{B_14_27}}{\mathrm{a41}}& \mathrm{B_6_4}+\frac{\mathrm{a21}\mathrm{B_18_4}}{\mathrm{a51}}+\mathrm{B_2_16}+\mathrm{B_2_28}+\frac{\mathrm{a11}\mathrm{B_14_28}}{\mathrm{a41}}\\ \mathrm{B_7_1}+\frac{\mathrm{a21}\mathrm{B_19_1}}{\mathrm{a51}}+\mathrm{B_3_13}+\mathrm{B_3_25}+\frac{\mathrm{a11}\mathrm{B_15_25}}{\mathrm{a41}}& \mathrm{B_7_2}+\frac{\mathrm{a21}\mathrm{B_19_2}}{\mathrm{a51}}+\mathrm{B_3_14}+\mathrm{B_3_26}+\frac{\mathrm{a11}\mathrm{B_15_26}}{\mathrm{a41}}& \mathrm{B_7_3}+\frac{\mathrm{a21}\mathrm{B_19_3}}{\mathrm{a51}}+\mathrm{B_3_15}+\mathrm{B_3_27}+\frac{\mathrm{a11}\mathrm{B_15_27}}{\mathrm{a41}}& \mathrm{B_7_4}+\frac{\mathrm{a21}\mathrm{B_19_4}}{\mathrm{a51}}+\mathrm{B_3_16}+\mathrm{B_3_28}+\frac{\mathrm{a11}\mathrm{B_15_28}}{\mathrm{a41}}\\ \mathrm{B_8_1}+\frac{\mathrm{a21}\mathrm{B_20_1}}{\mathrm{a51}}+\mathrm{B_4_13}+\mathrm{B_4_25}+\frac{\mathrm{a11}\mathrm{B_16_25}}{\mathrm{a41}}& \mathrm{B_8_2}+\frac{\mathrm{a21}\mathrm{B_20_2}}{\mathrm{a51}}+\mathrm{B_4_14}+\mathrm{B_4_26}+\frac{\mathrm{a11}\mathrm{B_16_26}}{\mathrm{a41}}& \mathrm{B_8_3}+\frac{\mathrm{a21}\mathrm{B_20_3}}{\mathrm{a51}}+\mathrm{B_4_15}+\mathrm{B_4_27}+\frac{\mathrm{a11}\mathrm{B_16_27}}{\mathrm{a41}}& \mathrm{B_8_4}+\frac{\mathrm{a21}\mathrm{B_20_4}}{\mathrm{a51}}+\mathrm{B_4_16}+\mathrm{B_4_28}+\frac{\mathrm{a11}\mathrm{B_16_28}}{\mathrm{a41}}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_1_2}+\mathrm{C_5_2}& \mathrm{C_1_3}+\mathrm{C_5_3}\\ \mathrm{C_2_2}+\mathrm{C_6_2}& \mathrm{C_2_3}+\mathrm{C_6_3}\\ \mathrm{C_3_2}+\mathrm{C_7_2}& \mathrm{C_3_3}+\mathrm{C_7_3}\\ \mathrm{C_4_2}+\mathrm{C_8_2}& \mathrm{C_4_3}+\mathrm{C_8_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_1_5}+\mathrm{A_1_13}& \mathrm{A_1_6}+\mathrm{A_1_14}& \mathrm{A_1_7}+\mathrm{A_1_15}& \mathrm{A_1_8}+\mathrm{A_1_16}\end{array}\right),\left(\begin{array}{cccc}-\mathrm{B_13_1}-\frac{\mathrm{a41}\mathrm{B_17_1}}{\mathrm{a51}}+\mathrm{B_13_5}-\frac{\mathrm{a41}\mathrm{B_21_5}}{\mathrm{a61}}& -\mathrm{B_13_2}-\frac{\mathrm{a41}\mathrm{B_17_2}}{\mathrm{a51}}+\mathrm{B_13_6}-\frac{\mathrm{a41}\mathrm{B_21_6}}{\mathrm{a61}}& -\mathrm{B_13_3}-\frac{\mathrm{a41}\mathrm{B_17_3}}{\mathrm{a51}}+\mathrm{B_13_7}-\frac{\mathrm{a41}\mathrm{B_21_7}}{\mathrm{a61}}& -\mathrm{B_13_4}-\frac{\mathrm{a41}\mathrm{B_17_4}}{\mathrm{a51}}+\mathrm{B_13_8}-\frac{\mathrm{a41}\mathrm{B_21_8}}{\mathrm{a61}}\\ -\mathrm{B_14_1}-\frac{\mathrm{a41}\mathrm{B_18_1}}{\mathrm{a51}}+\mathrm{B_14_5}-\frac{\mathrm{a41}\mathrm{B_22_5}}{\mathrm{a61}}& -\mathrm{B_14_2}-\frac{\mathrm{a41}\mathrm{B_18_2}}{\mathrm{a51}}+\mathrm{B_14_6}-\frac{\mathrm{a41}\mathrm{B_22_6}}{\mathrm{a61}}& -\mathrm{B_14_3}-\frac{\mathrm{a41}\mathrm{B_18_3}}{\mathrm{a51}}+\mathrm{B_14_7}-\frac{\mathrm{a41}\mathrm{B_22_7}}{\mathrm{a61}}& -\mathrm{B_14_4}-\frac{\mathrm{a41}\mathrm{B_18_4}}{\mathrm{a51}}+\mathrm{B_14_8}-\frac{\mathrm{a41}\mathrm{B_22_8}}{\mathrm{a61}}\\ -\mathrm{B_15_1}-\frac{\mathrm{a41}\mathrm{B_19_1}}{\mathrm{a51}}+\mathrm{B_15_5}-\frac{\mathrm{a41}\mathrm{B_23_5}}{\mathrm{a61}}& -\mathrm{B_15_2}-\frac{\mathrm{a41}\mathrm{B_19_2}}{\mathrm{a51}}+\mathrm{B_15_6}-\frac{\mathrm{a41}\mathrm{B_23_6}}{\mathrm{a61}}& -\mathrm{B_15_3}-\frac{\mathrm{a41}\mathrm{B_19_3}}{\mathrm{a51}}+\mathrm{B_15_7}-\frac{\mathrm{a41}\mathrm{B_23_7}}{\mathrm{a61}}& -\mathrm{B_15_4}-\frac{\mathrm{a41}\mathrm{B_19_4}}{\mathrm{a51}}+\mathrm{B_15_8}-\frac{\mathrm{a41}\mathrm{B_23_8}}{\mathrm{a61}}\\ -\mathrm{B_16_1}-\frac{\mathrm{a41}\mathrm{B_20_1}}{\mathrm{a51}}+\mathrm{B_16_5}-\frac{\mathrm{a41}\mathrm{B_24_5}}{\mathrm{a61}}& -\mathrm{B_16_2}-\frac{\mathrm{a41}\mathrm{B_20_2}}{\mathrm{a51}}+\mathrm{B_16_6}-\frac{\mathrm{a41}\mathrm{B_24_6}}{\mathrm{a61}}& -\mathrm{B_16_3}-\frac{\mathrm{a41}\mathrm{B_20_3}}{\mathrm{a51}}+\mathrm{B_16_7}-\frac{\mathrm{a41}\mathrm{B_24_7}}{\mathrm{a61}}& -\mathrm{B_16_4}-\frac{\mathrm{a41}\mathrm{B_20_4}}{\mathrm{a51}}+\mathrm{B_16_8}-\frac{\mathrm{a41}\mathrm{B_24_8}}{\mathrm{a61}}\end{array}\right),\left(\begin{array}{c}\mathrm{C_5_1}+\mathrm{C_13_1}\\ \mathrm{C_6_1}+\mathrm{C_14_1}\\ \mathrm{C_15_1}+\mathrm{C_7_1}\\ \mathrm{C_8_1}+\mathrm{C_16_1}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}-\mathrm{A_2_5}& -\mathrm{A_2_6}& -\mathrm{A_2_7}& -\mathrm{A_2_8}\\ \mathrm{A_1_5}-\mathrm{A_3_5}& \mathrm{A_1_6}-\mathrm{A_3_6}& \mathrm{A_1_7}-\mathrm{A_3_7}& \mathrm{A_1_8}-\mathrm{A_3_8}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_5_1}+\frac{\mathrm{a21}\mathrm{B_17_1}}{\mathrm{a51}}-\mathrm{B_5_5}+\mathrm{B_9_5}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_21_5}}{\mathrm{a61}}-\mathrm{B_1_13}+\mathrm{B_5_13}-\mathrm{B_1_25}+\mathrm{B_5_25}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_13_25}}{\mathrm{a41}}& \mathrm{B_5_2}+\frac{\mathrm{a21}\mathrm{B_17_2}}{\mathrm{a51}}-\mathrm{B_5_6}+\mathrm{B_9_6}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_21_6}}{\mathrm{a61}}-\mathrm{B_1_14}+\mathrm{B_5_14}-\mathrm{B_1_26}+\mathrm{B_5_26}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_13_26}}{\mathrm{a41}}& \mathrm{B_5_3}+\frac{\mathrm{a21}\mathrm{B_17_3}}{\mathrm{a51}}-\mathrm{B_5_7}+\mathrm{B_9_7}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_21_7}}{\mathrm{a61}}-\mathrm{B_1_15}+\mathrm{B_5_15}-\mathrm{B_1_27}+\mathrm{B_5_27}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_13_27}}{\mathrm{a41}}& \mathrm{B_5_4}+\frac{\mathrm{a21}\mathrm{B_17_4}}{\mathrm{a51}}-\mathrm{B_5_8}+\mathrm{B_9_8}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_21_8}}{\mathrm{a61}}-\mathrm{B_1_16}+\mathrm{B_5_16}-\mathrm{B_1_28}+\mathrm{B_5_28}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_13_28}}{\mathrm{a41}}\\ \mathrm{B_6_1}+\frac{\mathrm{a21}\mathrm{B_18_1}}{\mathrm{a51}}-\mathrm{B_6_5}+\mathrm{B_10_5}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_22_5}}{\mathrm{a61}}-\mathrm{B_2_13}+\mathrm{B_6_13}-\mathrm{B_2_25}+\mathrm{B_6_25}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_14_25}}{\mathrm{a41}}& \mathrm{B_6_2}+\frac{\mathrm{a21}\mathrm{B_18_2}}{\mathrm{a51}}-\mathrm{B_6_6}+\mathrm{B_10_6}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_22_6}}{\mathrm{a61}}-\mathrm{B_2_14}+\mathrm{B_6_14}-\mathrm{B_2_26}+\mathrm{B_6_26}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_14_26}}{\mathrm{a41}}& \mathrm{B_6_3}+\frac{\mathrm{a21}\mathrm{B_18_3}}{\mathrm{a51}}-\mathrm{B_6_7}+\mathrm{B_10_7}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_22_7}}{\mathrm{a61}}-\mathrm{B_2_15}+\mathrm{B_6_15}-\mathrm{B_2_27}+\mathrm{B_6_27}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_14_27}}{\mathrm{a41}}& \mathrm{B_6_4}+\frac{\mathrm{a21}\mathrm{B_18_4}}{\mathrm{a51}}-\mathrm{B_6_8}+\mathrm{B_10_8}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_22_8}}{\mathrm{a61}}-\mathrm{B_2_16}+\mathrm{B_6_16}-\mathrm{B_2_28}+\mathrm{B_6_28}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_14_28}}{\mathrm{a41}}\\ \mathrm{B_7_1}+\frac{\mathrm{a21}\mathrm{B_19_1}}{\mathrm{a51}}-\mathrm{B_7_5}+\mathrm{B_11_5}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_23_5}}{\mathrm{a61}}-\mathrm{B_3_13}+\mathrm{B_7_13}-\mathrm{B_3_25}+\mathrm{B_7_25}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_15_25}}{\mathrm{a41}}& \mathrm{B_7_2}+\frac{\mathrm{a21}\mathrm{B_19_2}}{\mathrm{a51}}-\mathrm{B_7_6}+\mathrm{B_11_6}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_23_6}}{\mathrm{a61}}-\mathrm{B_3_14}+\mathrm{B_7_14}-\mathrm{B_3_26}+\mathrm{B_7_26}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_15_26}}{\mathrm{a41}}& \mathrm{B_7_3}+\frac{\mathrm{a21}\mathrm{B_19_3}}{\mathrm{a51}}-\mathrm{B_7_7}+\mathrm{B_11_7}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_23_7}}{\mathrm{a61}}-\mathrm{B_3_15}+\mathrm{B_7_15}-\mathrm{B_3_27}+\mathrm{B_7_27}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_15_27}}{\mathrm{a41}}& \mathrm{B_7_4}+\frac{\mathrm{a21}\mathrm{B_19_4}}{\mathrm{a51}}-\mathrm{B_7_8}+\mathrm{B_11_8}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_23_8}}{\mathrm{a61}}-\mathrm{B_3_16}+\mathrm{B_7_16}-\mathrm{B_3_28}+\mathrm{B_7_28}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_15_28}}{\mathrm{a41}}\\ \mathrm{B_8_1}+\frac{\mathrm{a21}\mathrm{B_20_1}}{\mathrm{a51}}-\mathrm{B_8_5}+\mathrm{B_12_5}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_24_5}}{\mathrm{a61}}-\mathrm{B_4_13}+\mathrm{B_8_13}-\mathrm{B_4_25}+\mathrm{B_8_25}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_16_25}}{\mathrm{a41}}& \mathrm{B_8_2}+\frac{\mathrm{a21}\mathrm{B_20_2}}{\mathrm{a51}}-\mathrm{B_8_6}+\mathrm{B_12_6}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_24_6}}{\mathrm{a61}}-\mathrm{B_4_14}+\mathrm{B_8_14}-\mathrm{B_4_26}+\mathrm{B_8_26}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_16_26}}{\mathrm{a41}}& \mathrm{B_8_3}+\frac{\mathrm{a21}\mathrm{B_20_3}}{\mathrm{a51}}-\mathrm{B_8_7}+\mathrm{B_12_7}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_24_7}}{\mathrm{a61}}-\mathrm{B_4_15}+\mathrm{B_8_15}-\mathrm{B_4_27}+\mathrm{B_8_27}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_16_27}}{\mathrm{a41}}& \mathrm{B_8_4}+\frac{\mathrm{a21}\mathrm{B_20_4}}{\mathrm{a51}}-\mathrm{B_8_8}+\mathrm{B_12_8}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_24_8}}{\mathrm{a61}}-\mathrm{B_4_16}+\mathrm{B_8_16}-\mathrm{B_4_28}+\mathrm{B_8_28}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_16_28}}{\mathrm{a41}}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_5_2}& \mathrm{C_5_3}\\ \mathrm{C_6_2}& \mathrm{C_6_3}\\ \mathrm{C_7_2}& \mathrm{C_7_3}\\ \mathrm{C_8_2}& \mathrm{C_8_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_2_5}+\mathrm{A_2_9}& \mathrm{A_2_6}+\mathrm{A_2_10}& \mathrm{A_2_7}+\mathrm{A_2_11}& \mathrm{A_2_8}+\mathrm{A_2_12}\\ \mathrm{A_3_5}+\mathrm{A_3_9}& \mathrm{A_3_6}+\mathrm{A_3_10}& \mathrm{A_3_7}+\mathrm{A_3_11}& \mathrm{A_3_8}+\mathrm{A_3_12}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_17_5}+\frac{\mathrm{a51}\mathrm{B_21_5}}{\mathrm{a61}}+\mathrm{B_5_9}& \mathrm{B_17_6}+\frac{\mathrm{a51}\mathrm{B_21_6}}{\mathrm{a61}}+\mathrm{B_5_10}& \mathrm{B_17_7}+\frac{\mathrm{a51}\mathrm{B_21_7}}{\mathrm{a61}}+\mathrm{B_5_11}& \mathrm{B_17_8}+\frac{\mathrm{a51}\mathrm{B_21_8}}{\mathrm{a61}}+\mathrm{B_5_12}\\ \mathrm{B_18_5}+\frac{\mathrm{a51}\mathrm{B_22_5}}{\mathrm{a61}}+\mathrm{B_6_9}& \mathrm{B_18_6}+\frac{\mathrm{a51}\mathrm{B_22_6}}{\mathrm{a61}}+\mathrm{B_6_10}& \mathrm{B_18_7}+\frac{\mathrm{a51}\mathrm{B_22_7}}{\mathrm{a61}}+\mathrm{B_6_11}& \mathrm{B_18_8}+\frac{\mathrm{a51}\mathrm{B_22_8}}{\mathrm{a61}}+\mathrm{B_6_12}\\ \mathrm{B_19_5}+\frac{\mathrm{a51}\mathrm{B_23_5}}{\mathrm{a61}}+\mathrm{B_7_9}& \mathrm{B_19_6}+\frac{\mathrm{a51}\mathrm{B_23_6}}{\mathrm{a61}}+\mathrm{B_7_10}& \mathrm{B_19_7}+\frac{\mathrm{a51}\mathrm{B_23_7}}{\mathrm{a61}}+\mathrm{B_7_11}& \mathrm{B_19_8}+\frac{\mathrm{a51}\mathrm{B_23_8}}{\mathrm{a61}}+\mathrm{B_7_12}\\ \mathrm{B_20_5}+\frac{\mathrm{a51}\mathrm{B_24_5}}{\mathrm{a61}}+\mathrm{B_8_9}& \mathrm{B_20_6}+\frac{\mathrm{a51}\mathrm{B_24_6}}{\mathrm{a61}}+\mathrm{B_8_10}& \mathrm{B_20_7}+\frac{\mathrm{a51}\mathrm{B_24_7}}{\mathrm{a61}}+\mathrm{B_8_11}& \mathrm{B_20_8}+\frac{\mathrm{a51}\mathrm{B_24_8}}{\mathrm{a61}}+\mathrm{B_8_12}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_5_2}+\mathrm{C_9_2}& \mathrm{C_5_3}+\mathrm{C_9_3}+\mathrm{C_5_1}+\mathrm{C_9_1}\\ \mathrm{C_6_2}+\mathrm{C_10_2}& \mathrm{C_6_3}+\mathrm{C_10_3}+\mathrm{C_6_1}+\mathrm{C_10_1}\\ \mathrm{C_7_2}+\mathrm{C_11_2}& \mathrm{C_7_3}+\mathrm{C_11_3}+\mathrm{C_7_1}+\mathrm{C_11_1}\\ \mathrm{C_8_2}+\mathrm{C_12_2}& \mathrm{C_8_1}+\mathrm{C_12_1}+\mathrm{C_8_3}+\mathrm{C_12_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_2_5}+\mathrm{A_2_13}& \mathrm{A_2_6}+\mathrm{A_2_14}& \mathrm{A_2_7}+\mathrm{A_2_15}& \mathrm{A_2_8}+\mathrm{A_2_16}\\ \mathrm{A_3_5}+\mathrm{A_3_13}& \mathrm{A_3_6}+\mathrm{A_3_14}& \mathrm{A_3_7}+\mathrm{A_3_15}& \mathrm{A_3_8}+\mathrm{A_3_16}\end{array}\right),\left(\begin{array}{cccc}-\mathrm{B_1_13}+\mathrm{B_5_13}& -\mathrm{B_1_14}+\mathrm{B_5_14}& -\mathrm{B_1_15}+\mathrm{B_5_15}& -\mathrm{B_1_16}+\mathrm{B_5_16}\\ -\mathrm{B_2_13}+\mathrm{B_6_13}& -\mathrm{B_2_14}+\mathrm{B_6_14}& -\mathrm{B_2_15}+\mathrm{B_6_15}& -\mathrm{B_2_16}+\mathrm{B_6_16}\\ -\mathrm{B_3_13}+\mathrm{B_7_13}& -\mathrm{B_3_14}+\mathrm{B_7_14}& -\mathrm{B_3_15}+\mathrm{B_7_15}& -\mathrm{B_3_16}+\mathrm{B_7_16}\\ -\mathrm{B_4_13}+\mathrm{B_8_13}& -\mathrm{B_4_14}+\mathrm{B_8_14}& -\mathrm{B_4_15}+\mathrm{B_8_15}& -\mathrm{B_4_16}+\mathrm{B_8_16}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_5_2}+\mathrm{C_13_2}& \mathrm{C_5_3}+\mathrm{C_13_3}\\ \mathrm{C_6_2}+\mathrm{C_14_2}& \mathrm{C_6_3}+\mathrm{C_14_3}\\ \mathrm{C_15_2}+\mathrm{C_7_2}& \mathrm{C_15_3}+\mathrm{C_7_3}\\ \mathrm{C_8_2}+\mathrm{C_16_2}& \mathrm{C_8_3}+\mathrm{C_16_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_1_9}-\mathrm{A_3_9}& \mathrm{A_1_10}-\mathrm{A_3_10}& \mathrm{A_1_11}-\mathrm{A_3_11}& \mathrm{A_1_12}-\mathrm{A_3_12}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_9_25}+\frac{\mathrm{a31}\mathrm{B_13_25}}{\mathrm{a41}}& \mathrm{B_9_26}+\frac{\mathrm{a31}\mathrm{B_13_26}}{\mathrm{a41}}& \mathrm{B_9_27}+\frac{\mathrm{a31}\mathrm{B_13_27}}{\mathrm{a41}}& \mathrm{B_9_28}+\frac{\mathrm{a31}\mathrm{B_13_28}}{\mathrm{a41}}\\ \mathrm{B_10_25}+\frac{\mathrm{a31}\mathrm{B_14_25}}{\mathrm{a41}}& \mathrm{B_10_26}+\frac{\mathrm{a31}\mathrm{B_14_26}}{\mathrm{a41}}& \mathrm{B_10_27}+\frac{\mathrm{a31}\mathrm{B_14_27}}{\mathrm{a41}}& \mathrm{B_10_28}+\frac{\mathrm{a31}\mathrm{B_14_28}}{\mathrm{a41}}\\ \mathrm{B_11_25}+\frac{\mathrm{a31}\mathrm{B_15_25}}{\mathrm{a41}}& \mathrm{B_11_26}+\frac{\mathrm{a31}\mathrm{B_15_26}}{\mathrm{a41}}& \mathrm{B_11_27}+\frac{\mathrm{a31}\mathrm{B_15_27}}{\mathrm{a41}}& \mathrm{B_11_28}+\frac{\mathrm{a31}\mathrm{B_15_28}}{\mathrm{a41}}\\ \mathrm{B_12_25}+\frac{\mathrm{a31}\mathrm{B_16_25}}{\mathrm{a41}}& \mathrm{B_12_26}+\frac{\mathrm{a31}\mathrm{B_16_26}}{\mathrm{a41}}& \mathrm{B_12_27}+\frac{\mathrm{a31}\mathrm{B_16_27}}{\mathrm{a41}}& \mathrm{B_12_28}+\frac{\mathrm{a31}\mathrm{B_16_28}}{\mathrm{a41}}\end{array}\right),\left(\begin{array}{c}\mathrm{C_25_1}\\ \mathrm{C_26_1}\\ \mathrm{C_27_1}\\ \mathrm{C_28_1}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_2_9}+\mathrm{A_2_17}& \mathrm{A_2_10}+\mathrm{A_2_18}& \mathrm{A_2_11}+\mathrm{A_2_19}& \mathrm{A_2_12}+\mathrm{A_2_20}\\ \mathrm{A_3_9}+\mathrm{A_3_17}& \mathrm{A_3_10}+\mathrm{A_3_18}& \mathrm{A_3_11}+\mathrm{A_3_19}& \mathrm{A_3_12}+\mathrm{A_3_20}\end{array}\right),\left(\begin{array}{cccc}-\mathrm{B_17_5}-\frac{\mathrm{a51}\mathrm{B_21_5}}{\mathrm{a61}}+\mathrm{B_17_9}& -\mathrm{B_17_6}-\frac{\mathrm{a51}\mathrm{B_21_6}}{\mathrm{a61}}+\mathrm{B_17_10}& -\mathrm{B_17_7}-\frac{\mathrm{a51}\mathrm{B_21_7}}{\mathrm{a61}}+\mathrm{B_17_11}& -\mathrm{B_17_8}-\frac{\mathrm{a51}\mathrm{B_21_8}}{\mathrm{a61}}+\mathrm{B_17_12}\\ -\mathrm{B_18_5}-\frac{\mathrm{a51}\mathrm{B_22_5}}{\mathrm{a61}}+\mathrm{B_18_9}& -\mathrm{B_18_6}-\frac{\mathrm{a51}\mathrm{B_22_6}}{\mathrm{a61}}+\mathrm{B_18_10}& -\mathrm{B_18_7}-\frac{\mathrm{a51}\mathrm{B_22_7}}{\mathrm{a61}}+\mathrm{B_18_11}& -\mathrm{B_18_8}-\frac{\mathrm{a51}\mathrm{B_22_8}}{\mathrm{a61}}+\mathrm{B_18_12}\\ -\mathrm{B_19_5}-\frac{\mathrm{a51}\mathrm{B_23_5}}{\mathrm{a61}}+\mathrm{B_19_9}& -\mathrm{B_19_6}-\frac{\mathrm{a51}\mathrm{B_23_6}}{\mathrm{a61}}+\mathrm{B_19_10}& -\mathrm{B_19_7}-\frac{\mathrm{a51}\mathrm{B_23_7}}{\mathrm{a61}}+\mathrm{B_19_11}& -\mathrm{B_19_8}-\frac{\mathrm{a51}\mathrm{B_23_8}}{\mathrm{a61}}+\mathrm{B_19_12}\\ -\mathrm{B_20_5}-\frac{\mathrm{a51}\mathrm{B_24_5}}{\mathrm{a61}}+\mathrm{B_20_9}& -\mathrm{B_20_6}-\frac{\mathrm{a51}\mathrm{B_24_6}}{\mathrm{a61}}+\mathrm{B_20_10}& -\mathrm{B_20_7}-\frac{\mathrm{a51}\mathrm{B_24_7}}{\mathrm{a61}}+\mathrm{B_20_11}& -\mathrm{B_20_8}-\frac{\mathrm{a51}\mathrm{B_24_8}}{\mathrm{a61}}+\mathrm{B_20_12}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_9_2}+\mathrm{C_17_2}& \mathrm{C_9_1}+\mathrm{C_17_1}+\mathrm{C_9_3}+\mathrm{C_17_3}\\ \mathrm{C_10_2}+\mathrm{C_18_2}& \mathrm{C_10_1}+\mathrm{C_18_1}+\mathrm{C_10_3}+\mathrm{C_18_3}\\ \mathrm{C_11_2}+\mathrm{C_19_2}& \mathrm{C_11_1}+\mathrm{C_19_1}+\mathrm{C_11_3}+\mathrm{C_19_3}\\ \mathrm{C_12_2}+\mathrm{C_20_2}& \mathrm{C_12_1}+\mathrm{C_20_1}+\mathrm{C_12_3}+\mathrm{C_20_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_1_9}+\mathrm{A_1_13}& \mathrm{A_1_10}+\mathrm{A_1_14}& \mathrm{A_1_11}+\mathrm{A_1_15}& \mathrm{A_1_12}+\mathrm{A_1_16}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_13_9}+\frac{\mathrm{a31}\mathrm{B_5_21}}{\mathrm{a21}}+\mathrm{B_9_21}& \mathrm{B_13_10}+\frac{\mathrm{a31}\mathrm{B_5_22}}{\mathrm{a21}}+\mathrm{B_9_22}& \mathrm{B_13_11}+\frac{\mathrm{a31}\mathrm{B_5_23}}{\mathrm{a21}}+\mathrm{B_9_23}& \mathrm{B_13_12}+\frac{\mathrm{a31}\mathrm{B_5_24}}{\mathrm{a21}}+\mathrm{B_9_24}\\ \mathrm{B_14_9}+\frac{\mathrm{a31}\mathrm{B_6_21}}{\mathrm{a21}}+\mathrm{B_10_21}& \mathrm{B_14_10}+\frac{\mathrm{a31}\mathrm{B_6_22}}{\mathrm{a21}}+\mathrm{B_10_22}& \mathrm{B_14_11}+\frac{\mathrm{a31}\mathrm{B_6_23}}{\mathrm{a21}}+\mathrm{B_10_23}& \mathrm{B_14_12}+\frac{\mathrm{a31}\mathrm{B_6_24}}{\mathrm{a21}}+\mathrm{B_10_24}\\ \mathrm{B_15_9}+\frac{\mathrm{a31}\mathrm{B_7_21}}{\mathrm{a21}}+\mathrm{B_11_21}& \mathrm{B_15_10}+\frac{\mathrm{a31}\mathrm{B_7_22}}{\mathrm{a21}}+\mathrm{B_11_22}& \mathrm{B_15_11}+\frac{\mathrm{a31}\mathrm{B_7_23}}{\mathrm{a21}}+\mathrm{B_11_23}& \mathrm{B_15_12}+\frac{\mathrm{a31}\mathrm{B_7_24}}{\mathrm{a21}}+\mathrm{B_11_24}\\ \mathrm{B_16_9}+\frac{\mathrm{a31}\mathrm{B_8_21}}{\mathrm{a21}}+\mathrm{B_12_21}& \mathrm{B_16_10}+\frac{\mathrm{a31}\mathrm{B_8_22}}{\mathrm{a21}}+\mathrm{B_12_22}& \mathrm{B_16_11}+\frac{\mathrm{a31}\mathrm{B_8_23}}{\mathrm{a21}}+\mathrm{B_12_23}& \mathrm{B_16_12}+\frac{\mathrm{a31}\mathrm{B_8_24}}{\mathrm{a21}}+\mathrm{B_12_24}\end{array}\right),\left(\begin{array}{c}\mathrm{C_9_1}+\mathrm{C_13_1}+\mathrm{C_9_3}+\mathrm{C_13_3}\\ \mathrm{C_10_1}+\mathrm{C_14_1}+\mathrm{C_10_3}+\mathrm{C_14_3}\\ \mathrm{C_11_1}+\mathrm{C_15_1}+\mathrm{C_11_3}+\mathrm{C_15_3}\\ \mathrm{C_12_1}+\mathrm{C_16_1}+\mathrm{C_12_3}+\mathrm{C_16_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_1_13}-\mathrm{A_3_13}& \mathrm{A_1_14}-\mathrm{A_3_14}& \mathrm{A_1_15}-\mathrm{A_3_15}& \mathrm{A_1_16}-\mathrm{A_3_16}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_13_1}+\frac{\mathrm{a41}\mathrm{B_17_1}}{\mathrm{a51}}-\mathrm{B_13_5}+\frac{\mathrm{a41}\mathrm{B_21_5}}{\mathrm{a61}}+\mathrm{B_21_9}+\mathrm{B_1_13}-\mathrm{B_9_13}+\mathrm{B_13_13}-\mathrm{B_21_13}-\frac{\mathrm{a41}\mathrm{B_1_17}}{\mathrm{a11}}-\mathrm{B_13_17}& \mathrm{B_13_2}+\frac{\mathrm{a41}\mathrm{B_17_2}}{\mathrm{a51}}-\mathrm{B_13_6}+\frac{\mathrm{a41}\mathrm{B_21_6}}{\mathrm{a61}}+\mathrm{B_21_10}+\mathrm{B_1_14}-\mathrm{B_9_14}+\mathrm{B_13_14}-\mathrm{B_21_14}-\frac{\mathrm{a41}\mathrm{B_1_18}}{\mathrm{a11}}-\mathrm{B_13_18}& \mathrm{B_13_3}+\frac{\mathrm{a41}\mathrm{B_17_3}}{\mathrm{a51}}-\mathrm{B_13_7}+\frac{\mathrm{a41}\mathrm{B_21_7}}{\mathrm{a61}}+\mathrm{B_21_11}+\mathrm{B_1_15}-\mathrm{B_9_15}+\mathrm{B_13_15}-\mathrm{B_21_15}-\frac{\mathrm{a41}\mathrm{B_1_19}}{\mathrm{a11}}-\mathrm{B_13_19}& \mathrm{B_13_4}+\frac{\mathrm{a41}\mathrm{B_17_4}}{\mathrm{a51}}-\mathrm{B_13_8}+\frac{\mathrm{a41}\mathrm{B_21_8}}{\mathrm{a61}}+\mathrm{B_21_12}+\mathrm{B_1_16}-\mathrm{B_9_16}+\mathrm{B_13_16}-\mathrm{B_21_16}-\frac{\mathrm{a41}\mathrm{B_1_20}}{\mathrm{a11}}-\mathrm{B_13_20}\\ \mathrm{B_14_1}+\frac{\mathrm{a41}\mathrm{B_18_1}}{\mathrm{a51}}-\mathrm{B_14_5}+\frac{\mathrm{a41}\mathrm{B_22_5}}{\mathrm{a61}}+\mathrm{B_22_9}+\mathrm{B_2_13}-\mathrm{B_10_13}+\mathrm{B_14_13}-\mathrm{B_22_13}-\frac{\mathrm{a41}\mathrm{B_2_17}}{\mathrm{a11}}-\mathrm{B_14_17}& \mathrm{B_14_2}+\frac{\mathrm{a41}\mathrm{B_18_2}}{\mathrm{a51}}-\mathrm{B_14_6}+\frac{\mathrm{a41}\mathrm{B_22_6}}{\mathrm{a61}}+\mathrm{B_22_10}+\mathrm{B_2_14}-\mathrm{B_10_14}+\mathrm{B_14_14}-\mathrm{B_22_14}-\frac{\mathrm{a41}\mathrm{B_2_18}}{\mathrm{a11}}-\mathrm{B_14_18}& \mathrm{B_14_3}+\frac{\mathrm{a41}\mathrm{B_18_3}}{\mathrm{a51}}-\mathrm{B_14_7}+\frac{\mathrm{a41}\mathrm{B_22_7}}{\mathrm{a61}}+\mathrm{B_22_11}+\mathrm{B_2_15}-\mathrm{B_10_15}+\mathrm{B_14_15}-\mathrm{B_22_15}-\frac{\mathrm{a41}\mathrm{B_2_19}}{\mathrm{a11}}-\mathrm{B_14_19}& \mathrm{B_14_4}+\frac{\mathrm{a41}\mathrm{B_18_4}}{\mathrm{a51}}-\mathrm{B_14_8}+\frac{\mathrm{a41}\mathrm{B_22_8}}{\mathrm{a61}}+\mathrm{B_22_12}+\mathrm{B_2_16}-\mathrm{B_10_16}+\mathrm{B_14_16}-\mathrm{B_22_16}-\frac{\mathrm{a41}\mathrm{B_2_20}}{\mathrm{a11}}-\mathrm{B_14_20}\\ \mathrm{B_15_1}+\frac{\mathrm{a41}\mathrm{B_19_1}}{\mathrm{a51}}-\mathrm{B_15_5}+\frac{\mathrm{a41}\mathrm{B_23_5}}{\mathrm{a61}}+\mathrm{B_23_9}+\mathrm{B_3_13}-\mathrm{B_11_13}+\mathrm{B_15_13}-\mathrm{B_23_13}-\frac{\mathrm{a41}\mathrm{B_3_17}}{\mathrm{a11}}-\mathrm{B_15_17}& \mathrm{B_15_2}+\frac{\mathrm{a41}\mathrm{B_19_2}}{\mathrm{a51}}-\mathrm{B_15_6}+\frac{\mathrm{a41}\mathrm{B_23_6}}{\mathrm{a61}}+\mathrm{B_23_10}+\mathrm{B_3_14}-\mathrm{B_11_14}+\mathrm{B_15_14}-\mathrm{B_23_14}-\frac{\mathrm{a41}\mathrm{B_3_18}}{\mathrm{a11}}-\mathrm{B_15_18}& \mathrm{B_15_3}+\frac{\mathrm{a41}\mathrm{B_19_3}}{\mathrm{a51}}-\mathrm{B_15_7}+\frac{\mathrm{a41}\mathrm{B_23_7}}{\mathrm{a61}}+\mathrm{B_23_11}+\mathrm{B_3_15}-\mathrm{B_11_15}+\mathrm{B_15_15}-\mathrm{B_23_15}-\frac{\mathrm{a41}\mathrm{B_3_19}}{\mathrm{a11}}-\mathrm{B_15_19}& \mathrm{B_15_4}+\frac{\mathrm{a41}\mathrm{B_19_4}}{\mathrm{a51}}-\mathrm{B_15_8}+\frac{\mathrm{a41}\mathrm{B_23_8}}{\mathrm{a61}}+\mathrm{B_23_12}+\mathrm{B_3_16}-\mathrm{B_11_16}+\mathrm{B_15_16}-\mathrm{B_23_16}-\frac{\mathrm{a41}\mathrm{B_3_20}}{\mathrm{a11}}-\mathrm{B_15_20}\\ \mathrm{B_16_1}+\frac{\mathrm{a41}\mathrm{B_20_1}}{\mathrm{a51}}-\mathrm{B_16_5}+\frac{\mathrm{a41}\mathrm{B_24_5}}{\mathrm{a61}}+\mathrm{B_24_9}+\mathrm{B_4_13}-\mathrm{B_12_13}+\mathrm{B_16_13}-\mathrm{B_24_13}-\frac{\mathrm{a41}\mathrm{B_4_17}}{\mathrm{a11}}-\mathrm{B_16_17}& \mathrm{B_16_2}+\frac{\mathrm{a41}\mathrm{B_20_2}}{\mathrm{a51}}-\mathrm{B_16_6}+\frac{\mathrm{a41}\mathrm{B_24_6}}{\mathrm{a61}}+\mathrm{B_24_10}+\mathrm{B_4_14}-\mathrm{B_12_14}+\mathrm{B_16_14}-\mathrm{B_24_14}-\frac{\mathrm{a41}\mathrm{B_4_18}}{\mathrm{a11}}-\mathrm{B_16_18}& \mathrm{B_16_3}+\frac{\mathrm{a41}\mathrm{B_20_3}}{\mathrm{a51}}-\mathrm{B_16_7}+\frac{\mathrm{a41}\mathrm{B_24_7}}{\mathrm{a61}}+\mathrm{B_24_11}+\mathrm{B_4_15}-\mathrm{B_12_15}+\mathrm{B_16_15}-\mathrm{B_24_15}-\frac{\mathrm{a41}\mathrm{B_4_19}}{\mathrm{a11}}-\mathrm{B_16_19}& \mathrm{B_16_4}+\frac{\mathrm{a41}\mathrm{B_20_4}}{\mathrm{a51}}-\mathrm{B_16_8}+\frac{\mathrm{a41}\mathrm{B_24_8}}{\mathrm{a61}}+\mathrm{B_24_12}+\mathrm{B_4_16}-\mathrm{B_12_16}+\mathrm{B_16_16}-\mathrm{B_24_16}-\frac{\mathrm{a41}\mathrm{B_4_20}}{\mathrm{a11}}-\mathrm{B_16_20}\end{array}\right),\left(\begin{array}{c}\mathrm{C_13_1}\\ \mathrm{C_14_1}\\ \mathrm{C_15_1}\\ \mathrm{C_16_1}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_1_13}+\mathrm{A_1_17}& \mathrm{A_1_14}+\mathrm{A_1_18}& \mathrm{A_1_15}+\mathrm{A_1_19}& \mathrm{A_1_16}+\mathrm{A_1_20}\end{array}\right),\left(\begin{array}{cccc}\frac{\mathrm{a41}\mathrm{B_1_17}}{\mathrm{a11}}+\mathrm{B_13_17}& \frac{\mathrm{a41}\mathrm{B_1_18}}{\mathrm{a11}}+\mathrm{B_13_18}& \frac{\mathrm{a41}\mathrm{B_1_19}}{\mathrm{a11}}+\mathrm{B_13_19}& \frac{\mathrm{a41}\mathrm{B_1_20}}{\mathrm{a11}}+\mathrm{B_13_20}\\ \frac{\mathrm{a41}\mathrm{B_2_17}}{\mathrm{a11}}+\mathrm{B_14_17}& \frac{\mathrm{a41}\mathrm{B_2_18}}{\mathrm{a11}}+\mathrm{B_14_18}& \frac{\mathrm{a41}\mathrm{B_2_19}}{\mathrm{a11}}+\mathrm{B_14_19}& \frac{\mathrm{a41}\mathrm{B_2_20}}{\mathrm{a11}}+\mathrm{B_14_20}\\ \frac{\mathrm{a41}\mathrm{B_3_17}}{\mathrm{a11}}+\mathrm{B_15_17}& \frac{\mathrm{a41}\mathrm{B_3_18}}{\mathrm{a11}}+\mathrm{B_15_18}& \frac{\mathrm{a41}\mathrm{B_3_19}}{\mathrm{a11}}+\mathrm{B_15_19}& \frac{\mathrm{a41}\mathrm{B_3_20}}{\mathrm{a11}}+\mathrm{B_15_20}\\ \frac{\mathrm{a41}\mathrm{B_4_17}}{\mathrm{a11}}+\mathrm{B_16_17}& \frac{\mathrm{a41}\mathrm{B_4_18}}{\mathrm{a11}}+\mathrm{B_16_18}& \frac{\mathrm{a41}\mathrm{B_4_19}}{\mathrm{a11}}+\mathrm{B_16_19}& \frac{\mathrm{a41}\mathrm{B_4_20}}{\mathrm{a11}}+\mathrm{B_16_20}\end{array}\right),\left(\begin{array}{c}\mathrm{C_13_1}+\mathrm{C_17_1}\\ \mathrm{C_14_1}+\mathrm{C_18_1}\\ \mathrm{C_15_1}+\mathrm{C_19_1}\\ \mathrm{C_16_1}+\mathrm{C_20_1}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_1_13}+\mathrm{A_1_21}& \mathrm{A_1_14}+\mathrm{A_1_22}& \mathrm{A_1_15}+\mathrm{A_1_23}& \mathrm{A_1_16}+\mathrm{A_1_24}\end{array}\right),\left(\begin{array}{cccc}-\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_5_21}}{\mathrm{a21}}-\mathrm{B_9_21}+\mathrm{B_13_21}& -\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_5_22}}{\mathrm{a21}}-\mathrm{B_9_22}+\mathrm{B_13_22}& -\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_5_23}}{\mathrm{a21}}-\mathrm{B_9_23}+\mathrm{B_13_23}& -\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_5_24}}{\mathrm{a21}}-\mathrm{B_9_24}+\mathrm{B_13_24}\\ -\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_6_21}}{\mathrm{a21}}-\mathrm{B_10_21}+\mathrm{B_14_21}& -\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_6_22}}{\mathrm{a21}}-\mathrm{B_10_22}+\mathrm{B_14_22}& -\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_6_23}}{\mathrm{a21}}-\mathrm{B_10_23}+\mathrm{B_14_23}& -\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_6_24}}{\mathrm{a21}}-\mathrm{B_10_24}+\mathrm{B_14_24}\\ -\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_7_21}}{\mathrm{a21}}-\mathrm{B_11_21}+\mathrm{B_15_21}& -\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_7_22}}{\mathrm{a21}}-\mathrm{B_11_22}+\mathrm{B_15_22}& -\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_7_23}}{\mathrm{a21}}-\mathrm{B_11_23}+\mathrm{B_15_23}& -\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_7_24}}{\mathrm{a21}}-\mathrm{B_11_24}+\mathrm{B_15_24}\\ -\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_8_21}}{\mathrm{a21}}-\mathrm{B_12_21}+\mathrm{B_16_21}& -\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_8_22}}{\mathrm{a21}}-\mathrm{B_12_22}+\mathrm{B_16_22}& -\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_8_23}}{\mathrm{a21}}-\mathrm{B_12_23}+\mathrm{B_16_23}& -\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_8_24}}{\mathrm{a21}}-\mathrm{B_12_24}+\mathrm{B_16_24}\end{array}\right),\left(\begin{array}{c}\mathrm{C_13_1}+\mathrm{C_21_1}+\mathrm{C_13_3}+\mathrm{C_21_3}\\ \mathrm{C_14_1}+\mathrm{C_22_1}+\mathrm{C_14_3}+\mathrm{C_22_3}\\ \mathrm{C_15_1}+\mathrm{C_23_1}+\mathrm{C_15_3}+\mathrm{C_23_3}\\ \mathrm{C_16_1}+\mathrm{C_24_1}+\mathrm{C_16_3}+\mathrm{C_24_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_2_13}& \mathrm{A_2_14}& \mathrm{A_2_15}& \mathrm{A_2_16}\\ \mathrm{A_1_5}+\mathrm{A_3_13}& \mathrm{A_1_6}+\mathrm{A_3_14}& \mathrm{A_1_7}+\mathrm{A_3_15}& \mathrm{A_1_8}+\mathrm{A_3_16}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_13_1}+\frac{\mathrm{a41}\mathrm{B_17_1}}{\mathrm{a51}}-\mathrm{B_13_5}+\frac{\mathrm{a41}\mathrm{B_21_5}}{\mathrm{a61}}-\mathrm{B_1_13}+\mathrm{B_5_13}& \mathrm{B_13_2}+\frac{\mathrm{a41}\mathrm{B_17_2}}{\mathrm{a51}}-\mathrm{B_13_6}+\frac{\mathrm{a41}\mathrm{B_21_6}}{\mathrm{a61}}-\mathrm{B_1_14}+\mathrm{B_5_14}& \mathrm{B_13_3}+\frac{\mathrm{a41}\mathrm{B_17_3}}{\mathrm{a51}}-\mathrm{B_13_7}+\frac{\mathrm{a41}\mathrm{B_21_7}}{\mathrm{a61}}-\mathrm{B_1_15}+\mathrm{B_5_15}& \mathrm{B_13_4}+\frac{\mathrm{a41}\mathrm{B_17_4}}{\mathrm{a51}}-\mathrm{B_13_8}+\frac{\mathrm{a41}\mathrm{B_21_8}}{\mathrm{a61}}-\mathrm{B_1_16}+\mathrm{B_5_16}\\ \mathrm{B_14_1}+\frac{\mathrm{a41}\mathrm{B_18_1}}{\mathrm{a51}}-\mathrm{B_14_5}+\frac{\mathrm{a41}\mathrm{B_22_5}}{\mathrm{a61}}-\mathrm{B_2_13}+\mathrm{B_6_13}& \mathrm{B_14_2}+\frac{\mathrm{a41}\mathrm{B_18_2}}{\mathrm{a51}}-\mathrm{B_14_6}+\frac{\mathrm{a41}\mathrm{B_22_6}}{\mathrm{a61}}-\mathrm{B_2_14}+\mathrm{B_6_14}& \mathrm{B_14_3}+\frac{\mathrm{a41}\mathrm{B_18_3}}{\mathrm{a51}}-\mathrm{B_14_7}+\frac{\mathrm{a41}\mathrm{B_22_7}}{\mathrm{a61}}-\mathrm{B_2_15}+\mathrm{B_6_15}& \mathrm{B_14_4}+\frac{\mathrm{a41}\mathrm{B_18_4}}{\mathrm{a51}}-\mathrm{B_14_8}+\frac{\mathrm{a41}\mathrm{B_22_8}}{\mathrm{a61}}-\mathrm{B_2_16}+\mathrm{B_6_16}\\ \mathrm{B_15_1}+\frac{\mathrm{a41}\mathrm{B_19_1}}{\mathrm{a51}}-\mathrm{B_15_5}+\frac{\mathrm{a41}\mathrm{B_23_5}}{\mathrm{a61}}-\mathrm{B_3_13}+\mathrm{B_7_13}& \mathrm{B_15_2}+\frac{\mathrm{a41}\mathrm{B_19_2}}{\mathrm{a51}}-\mathrm{B_15_6}+\frac{\mathrm{a41}\mathrm{B_23_6}}{\mathrm{a61}}-\mathrm{B_3_14}+\mathrm{B_7_14}& \mathrm{B_15_3}+\frac{\mathrm{a41}\mathrm{B_19_3}}{\mathrm{a51}}-\mathrm{B_15_7}+\frac{\mathrm{a41}\mathrm{B_23_7}}{\mathrm{a61}}-\mathrm{B_3_15}+\mathrm{B_7_15}& \mathrm{B_15_4}+\frac{\mathrm{a41}\mathrm{B_19_4}}{\mathrm{a51}}-\mathrm{B_15_8}+\frac{\mathrm{a41}\mathrm{B_23_8}}{\mathrm{a61}}-\mathrm{B_3_16}+\mathrm{B_7_16}\\ \mathrm{B_16_1}+\frac{\mathrm{a41}\mathrm{B_20_1}}{\mathrm{a51}}-\mathrm{B_16_5}+\frac{\mathrm{a41}\mathrm{B_24_5}}{\mathrm{a61}}-\mathrm{B_4_13}+\mathrm{B_8_13}& \mathrm{B_16_2}+\frac{\mathrm{a41}\mathrm{B_20_2}}{\mathrm{a51}}-\mathrm{B_16_6}+\frac{\mathrm{a41}\mathrm{B_24_6}}{\mathrm{a61}}-\mathrm{B_4_14}+\mathrm{B_8_14}& \mathrm{B_16_3}+\frac{\mathrm{a41}\mathrm{B_20_3}}{\mathrm{a51}}-\mathrm{B_16_7}+\frac{\mathrm{a41}\mathrm{B_24_7}}{\mathrm{a61}}-\mathrm{B_4_15}+\mathrm{B_8_15}& \mathrm{B_16_4}+\frac{\mathrm{a41}\mathrm{B_20_4}}{\mathrm{a51}}-\mathrm{B_16_8}+\frac{\mathrm{a41}\mathrm{B_24_8}}{\mathrm{a61}}-\mathrm{B_4_16}+\mathrm{B_8_16}\end{array}\right),\left(\begin{array}{cc}-\mathrm{C_5_2}& \mathrm{C_13_1}-\mathrm{C_5_3}\\ -\mathrm{C_6_2}& \mathrm{C_14_1}-\mathrm{C_6_3}\\ -\mathrm{C_7_2}& \mathrm{C_15_1}-\mathrm{C_7_3}\\ -\mathrm{C_8_2}& \mathrm{C_16_1}-\mathrm{C_8_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_2_13}& \mathrm{A_2_14}& \mathrm{A_2_15}& \mathrm{A_2_16}\\ \mathrm{A_3_13}+\mathrm{A_1_17}& \mathrm{A_3_14}+\mathrm{A_1_18}& \mathrm{A_3_15}+\mathrm{A_1_19}& \mathrm{A_3_16}+\mathrm{A_1_20}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_17_13}-\frac{\mathrm{a41}\mathrm{B_1_17}}{\mathrm{a11}}-\mathrm{B_13_17}& \mathrm{B_17_14}-\frac{\mathrm{a41}\mathrm{B_1_18}}{\mathrm{a11}}-\mathrm{B_13_18}& \mathrm{B_17_15}-\frac{\mathrm{a41}\mathrm{B_1_19}}{\mathrm{a11}}-\mathrm{B_13_19}& \mathrm{B_17_16}-\frac{\mathrm{a41}\mathrm{B_1_20}}{\mathrm{a11}}-\mathrm{B_13_20}\\ \mathrm{B_18_13}-\frac{\mathrm{a41}\mathrm{B_2_17}}{\mathrm{a11}}-\mathrm{B_14_17}& \mathrm{B_18_14}-\frac{\mathrm{a41}\mathrm{B_2_18}}{\mathrm{a11}}-\mathrm{B_14_18}& \mathrm{B_18_15}-\frac{\mathrm{a41}\mathrm{B_2_19}}{\mathrm{a11}}-\mathrm{B_14_19}& \mathrm{B_18_16}-\frac{\mathrm{a41}\mathrm{B_2_20}}{\mathrm{a11}}-\mathrm{B_14_20}\\ \mathrm{B_19_13}-\frac{\mathrm{a41}\mathrm{B_3_17}}{\mathrm{a11}}-\mathrm{B_15_17}& \mathrm{B_19_14}-\frac{\mathrm{a41}\mathrm{B_3_18}}{\mathrm{a11}}-\mathrm{B_15_18}& \mathrm{B_19_15}-\frac{\mathrm{a41}\mathrm{B_3_19}}{\mathrm{a11}}-\mathrm{B_15_19}& \mathrm{B_19_16}-\frac{\mathrm{a41}\mathrm{B_3_20}}{\mathrm{a11}}-\mathrm{B_15_20}\\ \mathrm{B_20_13}-\frac{\mathrm{a41}\mathrm{B_4_17}}{\mathrm{a11}}-\mathrm{B_16_17}& \mathrm{B_20_14}-\frac{\mathrm{a41}\mathrm{B_4_18}}{\mathrm{a11}}-\mathrm{B_16_18}& \mathrm{B_20_15}-\frac{\mathrm{a41}\mathrm{B_4_19}}{\mathrm{a11}}-\mathrm{B_16_19}& \mathrm{B_20_16}-\frac{\mathrm{a41}\mathrm{B_4_20}}{\mathrm{a11}}-\mathrm{B_16_20}\end{array}\right),\left(\begin{array}{cc}-\mathrm{C_17_2}& \mathrm{C_13_1}-\mathrm{C_17_3}\\ -\mathrm{C_18_2}& \mathrm{C_14_1}-\mathrm{C_18_3}\\ -\mathrm{C_19_2}& \mathrm{C_15_1}-\mathrm{C_19_3}\\ -\mathrm{C_20_2}& \mathrm{C_16_1}-\mathrm{C_20_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_2_13}+\mathrm{A_2_17}& \mathrm{A_2_14}+\mathrm{A_2_18}& \mathrm{A_2_15}+\mathrm{A_2_19}& \mathrm{A_2_16}+\mathrm{A_2_20}\\ \mathrm{A_3_13}+\mathrm{A_3_17}& \mathrm{A_3_14}+\mathrm{A_3_18}& \mathrm{A_3_15}+\mathrm{A_3_19}& \mathrm{A_3_16}+\mathrm{A_3_20}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_17_13}& \mathrm{B_17_14}& \mathrm{B_17_15}& \mathrm{B_17_16}\\ \mathrm{B_18_13}& \mathrm{B_18_14}& \mathrm{B_18_15}& \mathrm{B_18_16}\\ \mathrm{B_19_13}& \mathrm{B_19_14}& \mathrm{B_19_15}& \mathrm{B_19_16}\\ \mathrm{B_20_13}& \mathrm{B_20_14}& \mathrm{B_20_15}& \mathrm{B_20_16}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_13_2}+\mathrm{C_17_2}& \mathrm{C_13_3}+\mathrm{C_17_3}\\ \mathrm{C_14_2}+\mathrm{C_18_2}& \mathrm{C_14_3}+\mathrm{C_18_3}\\ \mathrm{C_15_2}+\mathrm{C_19_2}& \mathrm{C_15_3}+\mathrm{C_19_3}\\ \mathrm{C_16_2}+\mathrm{C_20_2}& \mathrm{C_16_3}+\mathrm{C_20_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}-\mathrm{A_2_17}& -\mathrm{A_2_18}& -\mathrm{A_2_19}& -\mathrm{A_2_20}\\ \mathrm{A_1_17}-\mathrm{A_3_17}& \mathrm{A_1_18}-\mathrm{A_3_18}& \mathrm{A_1_19}-\mathrm{A_3_19}& \mathrm{A_1_20}-\mathrm{A_3_20}\end{array}\right),\left(\begin{array}{cccc}-\mathrm{B_17_5}-\frac{\mathrm{a51}\mathrm{B_21_5}}{\mathrm{a61}}+\mathrm{B_17_13}-\frac{\left(\mathrm{a21}+\mathrm{a31}-\mathrm{a51}-\mathrm{a61}\right)\mathrm{B_1_17}}{\mathrm{a11}}-\mathrm{B_5_17}+\mathrm{B_9_17}-\mathrm{B_17_17}+\mathrm{B_21_17}+\frac{\mathrm{a51}\mathrm{B_13_25}}{\mathrm{a41}}+\mathrm{B_17_25}& -\mathrm{B_17_6}-\frac{\mathrm{a51}\mathrm{B_21_6}}{\mathrm{a61}}+\mathrm{B_17_14}-\frac{\left(\mathrm{a21}+\mathrm{a31}-\mathrm{a51}-\mathrm{a61}\right)\mathrm{B_1_18}}{\mathrm{a11}}-\mathrm{B_5_18}+\mathrm{B_9_18}-\mathrm{B_17_18}+\mathrm{B_21_18}+\frac{\mathrm{a51}\mathrm{B_13_26}}{\mathrm{a41}}+\mathrm{B_17_26}& -\mathrm{B_17_7}-\frac{\mathrm{a51}\mathrm{B_21_7}}{\mathrm{a61}}+\mathrm{B_17_15}-\frac{\left(\mathrm{a21}+\mathrm{a31}-\mathrm{a51}-\mathrm{a61}\right)\mathrm{B_1_19}}{\mathrm{a11}}-\mathrm{B_5_19}+\mathrm{B_9_19}-\mathrm{B_17_19}+\mathrm{B_21_19}+\frac{\mathrm{a51}\mathrm{B_13_27}}{\mathrm{a41}}+\mathrm{B_17_27}& -\mathrm{B_17_8}-\frac{\mathrm{a51}\mathrm{B_21_8}}{\mathrm{a61}}+\mathrm{B_17_16}-\frac{\left(\mathrm{a21}+\mathrm{a31}-\mathrm{a51}-\mathrm{a61}\right)\mathrm{B_1_20}}{\mathrm{a11}}-\mathrm{B_5_20}+\mathrm{B_9_20}-\mathrm{B_17_20}+\mathrm{B_21_20}+\frac{\mathrm{a51}\mathrm{B_13_28}}{\mathrm{a41}}+\mathrm{B_17_28}\\ -\mathrm{B_18_5}-\frac{\mathrm{a51}\mathrm{B_22_5}}{\mathrm{a61}}+\mathrm{B_18_13}-\frac{\left(\mathrm{a21}+\mathrm{a31}-\mathrm{a51}-\mathrm{a61}\right)\mathrm{B_2_17}}{\mathrm{a11}}-\mathrm{B_6_17}+\mathrm{B_10_17}-\mathrm{B_18_17}+\mathrm{B_22_17}+\frac{\mathrm{a51}\mathrm{B_14_25}}{\mathrm{a41}}+\mathrm{B_18_25}& -\mathrm{B_18_6}-\frac{\mathrm{a51}\mathrm{B_22_6}}{\mathrm{a61}}+\mathrm{B_18_14}-\frac{\left(\mathrm{a21}+\mathrm{a31}-\mathrm{a51}-\mathrm{a61}\right)\mathrm{B_2_18}}{\mathrm{a11}}-\mathrm{B_6_18}+\mathrm{B_10_18}-\mathrm{B_18_18}+\mathrm{B_22_18}+\frac{\mathrm{a51}\mathrm{B_14_26}}{\mathrm{a41}}+\mathrm{B_18_26}& -\mathrm{B_18_7}-\frac{\mathrm{a51}\mathrm{B_22_7}}{\mathrm{a61}}+\mathrm{B_18_15}-\frac{\left(\mathrm{a21}+\mathrm{a31}-\mathrm{a51}-\mathrm{a61}\right)\mathrm{B_2_19}}{\mathrm{a11}}-\mathrm{B_6_19}+\mathrm{B_10_19}-\mathrm{B_18_19}+\mathrm{B_22_19}+\frac{\mathrm{a51}\mathrm{B_14_27}}{\mathrm{a41}}+\mathrm{B_18_27}& -\mathrm{B_18_8}-\frac{\mathrm{a51}\mathrm{B_22_8}}{\mathrm{a61}}+\mathrm{B_18_16}-\frac{\left(\mathrm{a21}+\mathrm{a31}-\mathrm{a51}-\mathrm{a61}\right)\mathrm{B_2_20}}{\mathrm{a11}}-\mathrm{B_6_20}+\mathrm{B_10_20}-\mathrm{B_18_20}+\mathrm{B_22_20}+\frac{\mathrm{a51}\mathrm{B_14_28}}{\mathrm{a41}}+\mathrm{B_18_28}\\ -\mathrm{B_19_5}-\frac{\mathrm{a51}\mathrm{B_23_5}}{\mathrm{a61}}+\mathrm{B_19_13}-\frac{\left(\mathrm{a21}+\mathrm{a31}-\mathrm{a51}-\mathrm{a61}\right)\mathrm{B_3_17}}{\mathrm{a11}}-\mathrm{B_7_17}+\mathrm{B_11_17}-\mathrm{B_19_17}+\mathrm{B_23_17}+\frac{\mathrm{a51}\mathrm{B_15_25}}{\mathrm{a41}}+\mathrm{B_19_25}& -\mathrm{B_19_6}-\frac{\mathrm{a51}\mathrm{B_23_6}}{\mathrm{a61}}+\mathrm{B_19_14}-\frac{\left(\mathrm{a21}+\mathrm{a31}-\mathrm{a51}-\mathrm{a61}\right)\mathrm{B_3_18}}{\mathrm{a11}}-\mathrm{B_7_18}+\mathrm{B_11_18}-\mathrm{B_19_18}+\mathrm{B_23_18}+\frac{\mathrm{a51}\mathrm{B_15_26}}{\mathrm{a41}}+\mathrm{B_19_26}& -\mathrm{B_19_7}-\frac{\mathrm{a51}\mathrm{B_23_7}}{\mathrm{a61}}+\mathrm{B_19_15}-\frac{\left(\mathrm{a21}+\mathrm{a31}-\mathrm{a51}-\mathrm{a61}\right)\mathrm{B_3_19}}{\mathrm{a11}}-\mathrm{B_7_19}+\mathrm{B_11_19}-\mathrm{B_19_19}+\mathrm{B_23_19}+\frac{\mathrm{a51}\mathrm{B_15_27}}{\mathrm{a41}}+\mathrm{B_19_27}& -\mathrm{B_19_8}-\frac{\mathrm{a51}\mathrm{B_23_8}}{\mathrm{a61}}+\mathrm{B_19_16}-\frac{\left(\mathrm{a21}+\mathrm{a31}-\mathrm{a51}-\mathrm{a61}\right)\mathrm{B_3_20}}{\mathrm{a11}}-\mathrm{B_7_20}+\mathrm{B_11_20}-\mathrm{B_19_20}+\mathrm{B_23_20}+\frac{\mathrm{a51}\mathrm{B_15_28}}{\mathrm{a41}}+\mathrm{B_19_28}\\ -\mathrm{B_20_5}-\frac{\mathrm{a51}\mathrm{B_24_5}}{\mathrm{a61}}+\mathrm{B_20_13}-\frac{\left(\mathrm{a21}+\mathrm{a31}-\mathrm{a51}-\mathrm{a61}\right)\mathrm{B_4_17}}{\mathrm{a11}}-\mathrm{B_8_17}+\mathrm{B_12_17}-\mathrm{B_20_17}+\mathrm{B_24_17}+\frac{\mathrm{a51}\mathrm{B_16_25}}{\mathrm{a41}}+\mathrm{B_20_25}& -\mathrm{B_20_6}-\frac{\mathrm{a51}\mathrm{B_24_6}}{\mathrm{a61}}+\mathrm{B_20_14}-\frac{\left(\mathrm{a21}+\mathrm{a31}-\mathrm{a51}-\mathrm{a61}\right)\mathrm{B_4_18}}{\mathrm{a11}}-\mathrm{B_8_18}+\mathrm{B_12_18}-\mathrm{B_20_18}+\mathrm{B_24_18}+\frac{\mathrm{a51}\mathrm{B_16_26}}{\mathrm{a41}}+\mathrm{B_20_26}& -\mathrm{B_20_7}-\frac{\mathrm{a51}\mathrm{B_24_7}}{\mathrm{a61}}+\mathrm{B_20_15}-\frac{\left(\mathrm{a21}+\mathrm{a31}-\mathrm{a51}-\mathrm{a61}\right)\mathrm{B_4_19}}{\mathrm{a11}}-\mathrm{B_8_19}+\mathrm{B_12_19}-\mathrm{B_20_19}+\mathrm{B_24_19}+\frac{\mathrm{a51}\mathrm{B_16_27}}{\mathrm{a41}}+\mathrm{B_20_27}& -\mathrm{B_20_8}-\frac{\mathrm{a51}\mathrm{B_24_8}}{\mathrm{a61}}+\mathrm{B_20_16}-\frac{\left(\mathrm{a21}+\mathrm{a31}-\mathrm{a51}-\mathrm{a61}\right)\mathrm{B_4_20}}{\mathrm{a11}}-\mathrm{B_8_20}+\mathrm{B_12_20}-\mathrm{B_20_20}+\mathrm{B_24_20}+\frac{\mathrm{a51}\mathrm{B_16_28}}{\mathrm{a41}}+\mathrm{B_20_28}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_17_2}& \mathrm{C_17_3}\\ \mathrm{C_18_2}& \mathrm{C_18_3}\\ \mathrm{C_19_2}& \mathrm{C_19_3}\\ \mathrm{C_20_2}& \mathrm{C_20_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_2_17}+\mathrm{A_2_21}& \mathrm{A_2_18}+\mathrm{A_2_22}& \mathrm{A_2_19}+\mathrm{A_2_23}& \mathrm{A_2_20}+\mathrm{A_2_24}\\ \mathrm{A_3_17}+\mathrm{A_3_21}& \mathrm{A_3_18}+\mathrm{A_3_22}& \mathrm{A_3_19}+\mathrm{A_3_23}& \mathrm{A_3_20}+\mathrm{A_3_24}\end{array}\right),\left(\begin{array}{cccc}\frac{\mathrm{a51}\mathrm{B_5_21}}{\mathrm{a21}}+\mathrm{B_17_21}& \frac{\mathrm{a51}\mathrm{B_5_22}}{\mathrm{a21}}+\mathrm{B_17_22}& \frac{\mathrm{a51}\mathrm{B_5_23}}{\mathrm{a21}}+\mathrm{B_17_23}& \frac{\mathrm{a51}\mathrm{B_5_24}}{\mathrm{a21}}+\mathrm{B_17_24}\\ \frac{\mathrm{a51}\mathrm{B_6_21}}{\mathrm{a21}}+\mathrm{B_18_21}& \frac{\mathrm{a51}\mathrm{B_6_22}}{\mathrm{a21}}+\mathrm{B_18_22}& \frac{\mathrm{a51}\mathrm{B_6_23}}{\mathrm{a21}}+\mathrm{B_18_23}& \frac{\mathrm{a51}\mathrm{B_6_24}}{\mathrm{a21}}+\mathrm{B_18_24}\\ \frac{\mathrm{a51}\mathrm{B_7_21}}{\mathrm{a21}}+\mathrm{B_19_21}& \frac{\mathrm{a51}\mathrm{B_7_22}}{\mathrm{a21}}+\mathrm{B_19_22}& \frac{\mathrm{a51}\mathrm{B_7_23}}{\mathrm{a21}}+\mathrm{B_19_23}& \frac{\mathrm{a51}\mathrm{B_7_24}}{\mathrm{a21}}+\mathrm{B_19_24}\\ \frac{\mathrm{a51}\mathrm{B_8_21}}{\mathrm{a21}}+\mathrm{B_20_21}& \frac{\mathrm{a51}\mathrm{B_8_22}}{\mathrm{a21}}+\mathrm{B_20_22}& \frac{\mathrm{a51}\mathrm{B_8_23}}{\mathrm{a21}}+\mathrm{B_20_23}& \frac{\mathrm{a51}\mathrm{B_8_24}}{\mathrm{a21}}+\mathrm{B_20_24}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_17_2}+\mathrm{C_21_2}& \mathrm{C_17_1}+\mathrm{C_21_1}+\mathrm{C_17_3}+\mathrm{C_21_3}\\ \mathrm{C_18_2}+\mathrm{C_22_2}& \mathrm{C_18_1}+\mathrm{C_22_1}+\mathrm{C_18_3}+\mathrm{C_22_3}\\ \mathrm{C_19_2}+\mathrm{C_23_2}& \mathrm{C_19_1}+\mathrm{C_23_1}+\mathrm{C_19_3}+\mathrm{C_23_3}\\ \mathrm{C_20_2}+\mathrm{C_24_2}& \mathrm{C_20_1}+\mathrm{C_24_1}+\mathrm{C_20_3}+\mathrm{C_24_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}-\mathrm{A_2_1}& -\mathrm{A_2_2}& -\mathrm{A_2_3}& -\mathrm{A_2_4}\\ \mathrm{A_1_1}-\mathrm{A_3_1}+\mathrm{A_1_9}& \mathrm{A_1_2}-\mathrm{A_3_2}+\mathrm{A_1_10}& \mathrm{A_1_3}-\mathrm{A_3_3}+\mathrm{A_1_11}& \mathrm{A_1_4}-\mathrm{A_3_4}+\mathrm{A_1_12}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_9_1}-\frac{\mathrm{a31}\mathrm{B_17_1}}{\mathrm{a51}}-\mathrm{B_1_9}& \mathrm{B_9_2}-\frac{\mathrm{a31}\mathrm{B_17_2}}{\mathrm{a51}}-\mathrm{B_1_10}& \mathrm{B_9_3}-\frac{\mathrm{a31}\mathrm{B_17_3}}{\mathrm{a51}}-\mathrm{B_1_11}& \mathrm{B_9_4}-\frac{\mathrm{a31}\mathrm{B_17_4}}{\mathrm{a51}}-\mathrm{B_1_12}\\ \mathrm{B_10_1}-\frac{\mathrm{a31}\mathrm{B_18_1}}{\mathrm{a51}}-\mathrm{B_2_9}& \mathrm{B_10_2}-\frac{\mathrm{a31}\mathrm{B_18_2}}{\mathrm{a51}}-\mathrm{B_2_10}& \mathrm{B_10_3}-\frac{\mathrm{a31}\mathrm{B_18_3}}{\mathrm{a51}}-\mathrm{B_2_11}& \mathrm{B_10_4}-\frac{\mathrm{a31}\mathrm{B_18_4}}{\mathrm{a51}}-\mathrm{B_2_12}\\ \mathrm{B_11_1}-\frac{\mathrm{a31}\mathrm{B_19_1}}{\mathrm{a51}}-\mathrm{B_3_9}& \mathrm{B_11_2}-\frac{\mathrm{a31}\mathrm{B_19_2}}{\mathrm{a51}}-\mathrm{B_3_10}& \mathrm{B_11_3}-\frac{\mathrm{a31}\mathrm{B_19_3}}{\mathrm{a51}}-\mathrm{B_3_11}& \mathrm{B_11_4}-\frac{\mathrm{a31}\mathrm{B_19_4}}{\mathrm{a51}}-\mathrm{B_3_12}\\ \mathrm{B_12_1}-\frac{\mathrm{a31}\mathrm{B_20_1}}{\mathrm{a51}}-\mathrm{B_4_9}& \mathrm{B_12_2}-\frac{\mathrm{a31}\mathrm{B_20_2}}{\mathrm{a51}}-\mathrm{B_4_10}& \mathrm{B_12_3}-\frac{\mathrm{a31}\mathrm{B_20_3}}{\mathrm{a51}}-\mathrm{B_4_11}& \mathrm{B_12_4}-\frac{\mathrm{a31}\mathrm{B_20_4}}{\mathrm{a51}}-\mathrm{B_4_12}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_1_2}+\mathrm{C_9_2}& \mathrm{C_1_1}+\mathrm{C_1_3}+\mathrm{C_9_3}\\ \mathrm{C_2_2}+\mathrm{C_10_2}& \mathrm{C_2_1}+\mathrm{C_2_3}+\mathrm{C_10_3}\\ \mathrm{C_3_2}+\mathrm{C_11_2}& \mathrm{C_3_1}+\mathrm{C_3_3}+\mathrm{C_11_3}\\ \mathrm{C_4_2}+\mathrm{C_12_2}& \mathrm{C_4_1}+\mathrm{C_4_3}+\mathrm{C_12_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}-\mathrm{A_2_1}& -\mathrm{A_2_2}& -\mathrm{A_2_3}& -\mathrm{A_2_4}\\ \mathrm{A_1_1}-\mathrm{A_3_1}+\mathrm{A_1_21}& \mathrm{A_1_2}-\mathrm{A_3_2}+\mathrm{A_1_22}& \mathrm{A_1_3}-\mathrm{A_3_3}+\mathrm{A_1_23}& \mathrm{A_1_4}-\mathrm{A_3_4}+\mathrm{A_1_24}\end{array}\right),\left(\begin{array}{cccc}\frac{\mathrm{a61}\mathrm{B_17_1}}{\mathrm{a51}}+\mathrm{B_21_1}-\mathrm{B_1_21}-\frac{\mathrm{a11}\mathrm{B_5_21}}{\mathrm{a21}}& \frac{\mathrm{a61}\mathrm{B_17_2}}{\mathrm{a51}}+\mathrm{B_21_2}-\mathrm{B_1_22}-\frac{\mathrm{a11}\mathrm{B_5_22}}{\mathrm{a21}}& \frac{\mathrm{a61}\mathrm{B_17_3}}{\mathrm{a51}}+\mathrm{B_21_3}-\mathrm{B_1_23}-\frac{\mathrm{a11}\mathrm{B_5_23}}{\mathrm{a21}}& \frac{\mathrm{a61}\mathrm{B_17_4}}{\mathrm{a51}}+\mathrm{B_21_4}-\mathrm{B_1_24}-\frac{\mathrm{a11}\mathrm{B_5_24}}{\mathrm{a21}}\\ \frac{\mathrm{a61}\mathrm{B_18_1}}{\mathrm{a51}}+\mathrm{B_22_1}-\mathrm{B_2_21}-\frac{\mathrm{a11}\mathrm{B_6_21}}{\mathrm{a21}}& \frac{\mathrm{a61}\mathrm{B_18_2}}{\mathrm{a51}}+\mathrm{B_22_2}-\mathrm{B_2_22}-\frac{\mathrm{a11}\mathrm{B_6_22}}{\mathrm{a21}}& \frac{\mathrm{a61}\mathrm{B_18_3}}{\mathrm{a51}}+\mathrm{B_22_3}-\mathrm{B_2_23}-\frac{\mathrm{a11}\mathrm{B_6_23}}{\mathrm{a21}}& \frac{\mathrm{a61}\mathrm{B_18_4}}{\mathrm{a51}}+\mathrm{B_22_4}-\mathrm{B_2_24}-\frac{\mathrm{a11}\mathrm{B_6_24}}{\mathrm{a21}}\\ \frac{\mathrm{a61}\mathrm{B_19_1}}{\mathrm{a51}}+\mathrm{B_23_1}-\mathrm{B_3_21}-\frac{\mathrm{a11}\mathrm{B_7_21}}{\mathrm{a21}}& \frac{\mathrm{a61}\mathrm{B_19_2}}{\mathrm{a51}}+\mathrm{B_23_2}-\mathrm{B_3_22}-\frac{\mathrm{a11}\mathrm{B_7_22}}{\mathrm{a21}}& \frac{\mathrm{a61}\mathrm{B_19_3}}{\mathrm{a51}}+\mathrm{B_23_3}-\mathrm{B_3_23}-\frac{\mathrm{a11}\mathrm{B_7_23}}{\mathrm{a21}}& \frac{\mathrm{a61}\mathrm{B_19_4}}{\mathrm{a51}}+\mathrm{B_23_4}-\mathrm{B_3_24}-\frac{\mathrm{a11}\mathrm{B_7_24}}{\mathrm{a21}}\\ \frac{\mathrm{a61}\mathrm{B_20_1}}{\mathrm{a51}}+\mathrm{B_24_1}-\mathrm{B_4_21}-\frac{\mathrm{a11}\mathrm{B_8_21}}{\mathrm{a21}}& \frac{\mathrm{a61}\mathrm{B_20_2}}{\mathrm{a51}}+\mathrm{B_24_2}-\mathrm{B_4_22}-\frac{\mathrm{a11}\mathrm{B_8_22}}{\mathrm{a21}}& \frac{\mathrm{a61}\mathrm{B_20_3}}{\mathrm{a51}}+\mathrm{B_24_3}-\mathrm{B_4_23}-\frac{\mathrm{a11}\mathrm{B_8_23}}{\mathrm{a21}}& \frac{\mathrm{a61}\mathrm{B_20_4}}{\mathrm{a51}}+\mathrm{B_24_4}-\mathrm{B_4_24}-\frac{\mathrm{a11}\mathrm{B_8_24}}{\mathrm{a21}}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_1_2}+\mathrm{C_21_2}& \mathrm{C_1_1}+\mathrm{C_1_3}+\mathrm{C_21_3}\\ \mathrm{C_2_2}+\mathrm{C_22_2}& \mathrm{C_2_1}+\mathrm{C_2_3}+\mathrm{C_22_3}\\ \mathrm{C_3_2}+\mathrm{C_23_2}& \mathrm{C_3_1}+\mathrm{C_3_3}+\mathrm{C_23_3}\\ \mathrm{C_4_2}+\mathrm{C_24_2}& \mathrm{C_4_1}+\mathrm{C_4_3}+\mathrm{C_24_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_2_5}+\mathrm{A_2_9}& \mathrm{A_2_6}+\mathrm{A_2_10}& \mathrm{A_2_7}+\mathrm{A_2_11}& \mathrm{A_2_8}+\mathrm{A_2_12}\\ \mathrm{A_3_5}+\mathrm{A_3_9}-\mathrm{A_1_17}& \mathrm{A_3_6}+\mathrm{A_3_10}-\mathrm{A_1_18}& \mathrm{A_3_7}+\mathrm{A_3_11}-\mathrm{A_1_19}& \mathrm{A_3_8}+\mathrm{A_3_12}-\mathrm{A_1_20}\end{array}\right),\left(\begin{array}{cccc}-\mathrm{B_17_5}-\frac{\mathrm{a51}\mathrm{B_21_5}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_1_17}}{\mathrm{a11}}+\mathrm{B_5_17}& -\mathrm{B_17_6}-\frac{\mathrm{a51}\mathrm{B_21_6}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_1_18}}{\mathrm{a11}}+\mathrm{B_5_18}& -\mathrm{B_17_7}-\frac{\mathrm{a51}\mathrm{B_21_7}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_1_19}}{\mathrm{a11}}+\mathrm{B_5_19}& -\mathrm{B_17_8}-\frac{\mathrm{a51}\mathrm{B_21_8}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_1_20}}{\mathrm{a11}}+\mathrm{B_5_20}\\ -\mathrm{B_18_5}-\frac{\mathrm{a51}\mathrm{B_22_5}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_2_17}}{\mathrm{a11}}+\mathrm{B_6_17}& -\mathrm{B_18_6}-\frac{\mathrm{a51}\mathrm{B_22_6}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_2_18}}{\mathrm{a11}}+\mathrm{B_6_18}& -\mathrm{B_18_7}-\frac{\mathrm{a51}\mathrm{B_22_7}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_2_19}}{\mathrm{a11}}+\mathrm{B_6_19}& -\mathrm{B_18_8}-\frac{\mathrm{a51}\mathrm{B_22_8}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_2_20}}{\mathrm{a11}}+\mathrm{B_6_20}\\ -\mathrm{B_19_5}-\frac{\mathrm{a51}\mathrm{B_23_5}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_3_17}}{\mathrm{a11}}+\mathrm{B_7_17}& -\mathrm{B_19_6}-\frac{\mathrm{a51}\mathrm{B_23_6}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_3_18}}{\mathrm{a11}}+\mathrm{B_7_18}& -\mathrm{B_19_7}-\frac{\mathrm{a51}\mathrm{B_23_7}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_3_19}}{\mathrm{a11}}+\mathrm{B_7_19}& -\mathrm{B_19_8}-\frac{\mathrm{a51}\mathrm{B_23_8}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_3_20}}{\mathrm{a11}}+\mathrm{B_7_20}\\ -\mathrm{B_20_5}-\frac{\mathrm{a51}\mathrm{B_24_5}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_4_17}}{\mathrm{a11}}+\mathrm{B_8_17}& -\mathrm{B_20_6}-\frac{\mathrm{a51}\mathrm{B_24_6}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_4_18}}{\mathrm{a11}}+\mathrm{B_8_18}& -\mathrm{B_20_7}-\frac{\mathrm{a51}\mathrm{B_24_7}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_4_19}}{\mathrm{a11}}+\mathrm{B_8_19}& -\mathrm{B_20_8}-\frac{\mathrm{a51}\mathrm{B_24_8}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_4_20}}{\mathrm{a11}}+\mathrm{B_8_20}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_17_2}& \mathrm{C_5_1}+\mathrm{C_9_1}+\mathrm{C_17_3}\\ \mathrm{C_18_2}& \mathrm{C_6_1}+\mathrm{C_10_1}+\mathrm{C_18_3}\\ \mathrm{C_19_2}& \mathrm{C_11_1}+\mathrm{C_7_1}+\mathrm{C_19_3}\\ \mathrm{C_20_2}& \mathrm{C_8_1}+\mathrm{C_12_1}+\mathrm{C_20_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}-\mathrm{A_2_5}-\mathrm{A_2_9}& -\mathrm{A_2_6}-\mathrm{A_2_10}& -\mathrm{A_2_7}-\mathrm{A_2_11}& -\mathrm{A_2_8}-\mathrm{A_2_12}\\ \mathrm{A_1_5}-\mathrm{A_3_5}-\mathrm{A_3_9}& \mathrm{A_1_6}-\mathrm{A_3_6}-\mathrm{A_3_10}& \mathrm{A_1_7}-\mathrm{A_3_7}-\mathrm{A_3_11}& \mathrm{A_1_8}-\mathrm{A_3_8}-\mathrm{A_3_12}\end{array}\right),\left(\begin{array}{cccc}-\mathrm{B_9_5}-\frac{\mathrm{a31}\mathrm{B_21_5}}{\mathrm{a61}}+\mathrm{B_5_9}& -\mathrm{B_9_6}-\frac{\mathrm{a31}\mathrm{B_21_6}}{\mathrm{a61}}+\mathrm{B_5_10}& -\mathrm{B_9_7}-\frac{\mathrm{a31}\mathrm{B_21_7}}{\mathrm{a61}}+\mathrm{B_5_11}& -\mathrm{B_9_8}-\frac{\mathrm{a31}\mathrm{B_21_8}}{\mathrm{a61}}+\mathrm{B_5_12}\\ -\mathrm{B_10_5}-\frac{\mathrm{a31}\mathrm{B_22_5}}{\mathrm{a61}}+\mathrm{B_6_9}& -\mathrm{B_10_6}-\frac{\mathrm{a31}\mathrm{B_22_6}}{\mathrm{a61}}+\mathrm{B_6_10}& -\mathrm{B_10_7}-\frac{\mathrm{a31}\mathrm{B_22_7}}{\mathrm{a61}}+\mathrm{B_6_11}& -\mathrm{B_10_8}-\frac{\mathrm{a31}\mathrm{B_22_8}}{\mathrm{a61}}+\mathrm{B_6_12}\\ -\mathrm{B_11_5}-\frac{\mathrm{a31}\mathrm{B_23_5}}{\mathrm{a61}}+\mathrm{B_7_9}& -\mathrm{B_11_6}-\frac{\mathrm{a31}\mathrm{B_23_6}}{\mathrm{a61}}+\mathrm{B_7_10}& -\mathrm{B_11_7}-\frac{\mathrm{a31}\mathrm{B_23_7}}{\mathrm{a61}}+\mathrm{B_7_11}& -\mathrm{B_11_8}-\frac{\mathrm{a31}\mathrm{B_23_8}}{\mathrm{a61}}+\mathrm{B_7_12}\\ -\mathrm{B_12_5}-\frac{\mathrm{a31}\mathrm{B_24_5}}{\mathrm{a61}}+\mathrm{B_8_9}& -\mathrm{B_12_6}-\frac{\mathrm{a31}\mathrm{B_24_6}}{\mathrm{a61}}+\mathrm{B_8_10}& -\mathrm{B_12_7}-\frac{\mathrm{a31}\mathrm{B_24_7}}{\mathrm{a61}}+\mathrm{B_8_11}& -\mathrm{B_12_8}-\frac{\mathrm{a31}\mathrm{B_24_8}}{\mathrm{a61}}+\mathrm{B_8_12}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_5_2}& \mathrm{C_5_1}+\mathrm{C_9_1}+\mathrm{C_5_3}\\ \mathrm{C_6_2}& \mathrm{C_6_1}+\mathrm{C_10_1}+\mathrm{C_6_3}\\ \mathrm{C_7_2}& \mathrm{C_11_1}+\mathrm{C_7_1}+\mathrm{C_7_3}\\ \mathrm{C_8_2}& \mathrm{C_8_1}+\mathrm{C_12_1}+\mathrm{C_8_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}-\mathrm{A_2_9}-\mathrm{A_2_17}& -\mathrm{A_2_10}-\mathrm{A_2_18}& -\mathrm{A_2_11}-\mathrm{A_2_19}& -\mathrm{A_2_12}-\mathrm{A_2_20}\\ -\mathrm{A_3_9}+\mathrm{A_1_17}-\mathrm{A_3_17}& -\mathrm{A_3_10}+\mathrm{A_1_18}-\mathrm{A_3_18}& -\mathrm{A_3_11}+\mathrm{A_1_19}-\mathrm{A_3_19}& -\mathrm{A_3_12}+\mathrm{A_1_20}-\mathrm{A_3_20}\end{array}\right),\left(\begin{array}{cccc}-\mathrm{B_17_5}-\frac{\mathrm{a51}\mathrm{B_21_5}}{\mathrm{a61}}+\mathrm{B_17_9}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_1_17}}{\mathrm{a11}}+\mathrm{B_5_17}-\mathrm{B_9_17}& -\mathrm{B_17_6}-\frac{\mathrm{a51}\mathrm{B_21_6}}{\mathrm{a61}}+\mathrm{B_17_10}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_1_18}}{\mathrm{a11}}+\mathrm{B_5_18}-\mathrm{B_9_18}& -\mathrm{B_17_7}-\frac{\mathrm{a51}\mathrm{B_21_7}}{\mathrm{a61}}+\mathrm{B_17_11}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_1_19}}{\mathrm{a11}}+\mathrm{B_5_19}-\mathrm{B_9_19}& -\mathrm{B_17_8}-\frac{\mathrm{a51}\mathrm{B_21_8}}{\mathrm{a61}}+\mathrm{B_17_12}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_1_20}}{\mathrm{a11}}+\mathrm{B_5_20}-\mathrm{B_9_20}\\ -\mathrm{B_18_5}-\frac{\mathrm{a51}\mathrm{B_22_5}}{\mathrm{a61}}+\mathrm{B_18_9}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_2_17}}{\mathrm{a11}}+\mathrm{B_6_17}-\mathrm{B_10_17}& -\mathrm{B_18_6}-\frac{\mathrm{a51}\mathrm{B_22_6}}{\mathrm{a61}}+\mathrm{B_18_10}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_2_18}}{\mathrm{a11}}+\mathrm{B_6_18}-\mathrm{B_10_18}& -\mathrm{B_18_7}-\frac{\mathrm{a51}\mathrm{B_22_7}}{\mathrm{a61}}+\mathrm{B_18_11}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_2_19}}{\mathrm{a11}}+\mathrm{B_6_19}-\mathrm{B_10_19}& -\mathrm{B_18_8}-\frac{\mathrm{a51}\mathrm{B_22_8}}{\mathrm{a61}}+\mathrm{B_18_12}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_2_20}}{\mathrm{a11}}+\mathrm{B_6_20}-\mathrm{B_10_20}\\ -\mathrm{B_19_5}-\frac{\mathrm{a51}\mathrm{B_23_5}}{\mathrm{a61}}+\mathrm{B_19_9}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_3_17}}{\mathrm{a11}}+\mathrm{B_7_17}-\mathrm{B_11_17}& -\mathrm{B_19_6}-\frac{\mathrm{a51}\mathrm{B_23_6}}{\mathrm{a61}}+\mathrm{B_19_10}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_3_18}}{\mathrm{a11}}+\mathrm{B_7_18}-\mathrm{B_11_18}& -\mathrm{B_19_7}-\frac{\mathrm{a51}\mathrm{B_23_7}}{\mathrm{a61}}+\mathrm{B_19_11}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_3_19}}{\mathrm{a11}}+\mathrm{B_7_19}-\mathrm{B_11_19}& -\mathrm{B_19_8}-\frac{\mathrm{a51}\mathrm{B_23_8}}{\mathrm{a61}}+\mathrm{B_19_12}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_3_20}}{\mathrm{a11}}+\mathrm{B_7_20}-\mathrm{B_11_20}\\ -\mathrm{B_20_5}-\frac{\mathrm{a51}\mathrm{B_24_5}}{\mathrm{a61}}+\mathrm{B_20_9}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_4_17}}{\mathrm{a11}}+\mathrm{B_8_17}-\mathrm{B_12_17}& -\mathrm{B_20_6}-\frac{\mathrm{a51}\mathrm{B_24_6}}{\mathrm{a61}}+\mathrm{B_20_10}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_4_18}}{\mathrm{a11}}+\mathrm{B_8_18}-\mathrm{B_12_18}& -\mathrm{B_20_7}-\frac{\mathrm{a51}\mathrm{B_24_7}}{\mathrm{a61}}+\mathrm{B_20_11}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_4_19}}{\mathrm{a11}}+\mathrm{B_8_19}-\mathrm{B_12_19}& -\mathrm{B_20_8}-\frac{\mathrm{a51}\mathrm{B_24_8}}{\mathrm{a61}}+\mathrm{B_20_12}+\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_4_20}}{\mathrm{a11}}+\mathrm{B_8_20}-\mathrm{B_12_20}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_17_2}& \mathrm{C_9_1}+\mathrm{C_17_1}+\mathrm{C_17_3}\\ \mathrm{C_18_2}& \mathrm{C_10_1}+\mathrm{C_18_1}+\mathrm{C_18_3}\\ \mathrm{C_19_2}& \mathrm{C_11_1}+\mathrm{C_19_1}+\mathrm{C_19_3}\\ \mathrm{C_20_2}& \mathrm{C_12_1}+\mathrm{C_20_1}+\mathrm{C_20_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}-\mathrm{A_2_13}& -\mathrm{A_2_14}& -\mathrm{A_2_15}& -\mathrm{A_2_16}\\ \mathrm{A_1_9}+\mathrm{A_1_13}-\mathrm{A_3_13}& \mathrm{A_1_10}+\mathrm{A_1_14}-\mathrm{A_3_14}& \mathrm{A_1_11}+\mathrm{A_1_15}-\mathrm{A_3_15}& \mathrm{A_1_12}+\mathrm{A_1_16}-\mathrm{A_3_16}\end{array}\right),\left(\begin{array}{cccc}-\mathrm{B_13_9}+\mathrm{B_9_13}& -\mathrm{B_13_10}+\mathrm{B_9_14}& -\mathrm{B_13_11}+\mathrm{B_9_15}& -\mathrm{B_13_12}+\mathrm{B_9_16}\\ -\mathrm{B_14_9}+\mathrm{B_10_13}& -\mathrm{B_14_10}+\mathrm{B_10_14}& -\mathrm{B_14_11}+\mathrm{B_10_15}& -\mathrm{B_14_12}+\mathrm{B_10_16}\\ -\mathrm{B_15_9}+\mathrm{B_11_13}& -\mathrm{B_15_10}+\mathrm{B_11_14}& -\mathrm{B_15_11}+\mathrm{B_11_15}& -\mathrm{B_15_12}+\mathrm{B_11_16}\\ -\mathrm{B_16_9}+\mathrm{B_12_13}& -\mathrm{B_16_10}+\mathrm{B_12_14}& -\mathrm{B_16_11}+\mathrm{B_12_15}& -\mathrm{B_16_12}+\mathrm{B_12_16}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_9_2}+\mathrm{C_13_2}& \mathrm{C_13_1}+\mathrm{C_9_3}+\mathrm{C_13_3}\\ \mathrm{C_10_2}+\mathrm{C_14_2}& \mathrm{C_14_1}+\mathrm{C_10_3}+\mathrm{C_14_3}\\ \mathrm{C_11_2}+\mathrm{C_15_2}& \mathrm{C_15_1}+\mathrm{C_11_3}+\mathrm{C_15_3}\\ \mathrm{C_12_2}+\mathrm{C_16_2}& \mathrm{C_16_1}+\mathrm{C_12_3}+\mathrm{C_16_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}-\mathrm{A_2_13}& -\mathrm{A_2_14}& -\mathrm{A_2_15}& -\mathrm{A_2_16}\\ \mathrm{A_1_13}-\mathrm{A_3_13}+\mathrm{A_1_21}& \mathrm{A_1_14}-\mathrm{A_3_14}+\mathrm{A_1_22}& \mathrm{A_1_15}-\mathrm{A_3_15}+\mathrm{A_1_23}& \mathrm{A_1_16}-\mathrm{A_3_16}+\mathrm{A_1_24}\end{array}\right),\left(\begin{array}{cccc}-\mathrm{B_21_9}+\mathrm{B_21_13}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_5_21}}{\mathrm{a21}}+\mathrm{B_9_21}-\mathrm{B_13_21}& -\mathrm{B_21_10}+\mathrm{B_21_14}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_5_22}}{\mathrm{a21}}+\mathrm{B_9_22}-\mathrm{B_13_22}& -\mathrm{B_21_11}+\mathrm{B_21_15}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_5_23}}{\mathrm{a21}}+\mathrm{B_9_23}-\mathrm{B_13_23}& -\mathrm{B_21_12}+\mathrm{B_21_16}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_5_24}}{\mathrm{a21}}+\mathrm{B_9_24}-\mathrm{B_13_24}\\ -\mathrm{B_22_9}+\mathrm{B_22_13}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_6_21}}{\mathrm{a21}}+\mathrm{B_10_21}-\mathrm{B_14_21}& -\mathrm{B_22_10}+\mathrm{B_22_14}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_6_22}}{\mathrm{a21}}+\mathrm{B_10_22}-\mathrm{B_14_22}& -\mathrm{B_22_11}+\mathrm{B_22_15}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_6_23}}{\mathrm{a21}}+\mathrm{B_10_23}-\mathrm{B_14_23}& -\mathrm{B_22_12}+\mathrm{B_22_16}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_6_24}}{\mathrm{a21}}+\mathrm{B_10_24}-\mathrm{B_14_24}\\ -\mathrm{B_23_9}+\mathrm{B_23_13}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_7_21}}{\mathrm{a21}}+\mathrm{B_11_21}-\mathrm{B_15_21}& -\mathrm{B_23_10}+\mathrm{B_23_14}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_7_22}}{\mathrm{a21}}+\mathrm{B_11_22}-\mathrm{B_15_22}& -\mathrm{B_23_11}+\mathrm{B_23_15}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_7_23}}{\mathrm{a21}}+\mathrm{B_11_23}-\mathrm{B_15_23}& -\mathrm{B_23_12}+\mathrm{B_23_16}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_7_24}}{\mathrm{a21}}+\mathrm{B_11_24}-\mathrm{B_15_24}\\ -\mathrm{B_24_9}+\mathrm{B_24_13}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_8_21}}{\mathrm{a21}}+\mathrm{B_12_21}-\mathrm{B_16_21}& -\mathrm{B_24_10}+\mathrm{B_24_14}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_8_22}}{\mathrm{a21}}+\mathrm{B_12_22}-\mathrm{B_16_22}& -\mathrm{B_24_11}+\mathrm{B_24_15}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_8_23}}{\mathrm{a21}}+\mathrm{B_12_23}-\mathrm{B_16_23}& -\mathrm{B_24_12}+\mathrm{B_24_16}+\frac{\left(\mathrm{a31}+\mathrm{a41}\right)\mathrm{B_8_24}}{\mathrm{a21}}+\mathrm{B_12_24}-\mathrm{B_16_24}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_13_2}+\mathrm{C_21_2}& \mathrm{C_13_1}+\mathrm{C_13_3}+\mathrm{C_21_3}\\ \mathrm{C_14_2}+\mathrm{C_22_2}& \mathrm{C_14_1}+\mathrm{C_14_3}+\mathrm{C_22_3}\\ \mathrm{C_15_2}+\mathrm{C_23_2}& \mathrm{C_15_1}+\mathrm{C_15_3}+\mathrm{C_23_3}\\ \mathrm{C_16_2}+\mathrm{C_24_2}& \mathrm{C_16_1}+\mathrm{C_16_3}+\mathrm{C_24_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}-\mathrm{A_2_17}-\mathrm{A_2_21}& -\mathrm{A_2_18}-\mathrm{A_2_22}& -\mathrm{A_2_19}-\mathrm{A_2_23}& -\mathrm{A_2_20}-\mathrm{A_2_24}\\ \mathrm{A_1_17}-\mathrm{A_3_17}-\mathrm{A_3_21}& \mathrm{A_1_18}-\mathrm{A_3_18}-\mathrm{A_3_22}& \mathrm{A_1_19}-\mathrm{A_3_19}-\mathrm{A_3_23}& \mathrm{A_1_20}-\mathrm{A_3_20}-\mathrm{A_3_24}\end{array}\right),\left(\begin{array}{cccc}-\frac{\mathrm{a61}\mathrm{B_1_17}}{\mathrm{a11}}-\mathrm{B_21_17}+\frac{\mathrm{a51}\mathrm{B_5_21}}{\mathrm{a21}}+\mathrm{B_17_21}& -\frac{\mathrm{a61}\mathrm{B_1_18}}{\mathrm{a11}}-\mathrm{B_21_18}+\frac{\mathrm{a51}\mathrm{B_5_22}}{\mathrm{a21}}+\mathrm{B_17_22}& -\frac{\mathrm{a61}\mathrm{B_1_19}}{\mathrm{a11}}-\mathrm{B_21_19}+\frac{\mathrm{a51}\mathrm{B_5_23}}{\mathrm{a21}}+\mathrm{B_17_23}& -\frac{\mathrm{a61}\mathrm{B_1_20}}{\mathrm{a11}}-\mathrm{B_21_20}+\frac{\mathrm{a51}\mathrm{B_5_24}}{\mathrm{a21}}+\mathrm{B_17_24}\\ -\frac{\mathrm{a61}\mathrm{B_2_17}}{\mathrm{a11}}-\mathrm{B_22_17}+\frac{\mathrm{a51}\mathrm{B_6_21}}{\mathrm{a21}}+\mathrm{B_18_21}& -\frac{\mathrm{a61}\mathrm{B_2_18}}{\mathrm{a11}}-\mathrm{B_22_18}+\frac{\mathrm{a51}\mathrm{B_6_22}}{\mathrm{a21}}+\mathrm{B_18_22}& -\frac{\mathrm{a61}\mathrm{B_2_19}}{\mathrm{a11}}-\mathrm{B_22_19}+\frac{\mathrm{a51}\mathrm{B_6_23}}{\mathrm{a21}}+\mathrm{B_18_23}& -\frac{\mathrm{a61}\mathrm{B_2_20}}{\mathrm{a11}}-\mathrm{B_22_20}+\frac{\mathrm{a51}\mathrm{B_6_24}}{\mathrm{a21}}+\mathrm{B_18_24}\\ -\frac{\mathrm{a61}\mathrm{B_3_17}}{\mathrm{a11}}-\mathrm{B_23_17}+\frac{\mathrm{a51}\mathrm{B_7_21}}{\mathrm{a21}}+\mathrm{B_19_21}& -\frac{\mathrm{a61}\mathrm{B_3_18}}{\mathrm{a11}}-\mathrm{B_23_18}+\frac{\mathrm{a51}\mathrm{B_7_22}}{\mathrm{a21}}+\mathrm{B_19_22}& -\frac{\mathrm{a61}\mathrm{B_3_19}}{\mathrm{a11}}-\mathrm{B_23_19}+\frac{\mathrm{a51}\mathrm{B_7_23}}{\mathrm{a21}}+\mathrm{B_19_23}& -\frac{\mathrm{a61}\mathrm{B_3_20}}{\mathrm{a11}}-\mathrm{B_23_20}+\frac{\mathrm{a51}\mathrm{B_7_24}}{\mathrm{a21}}+\mathrm{B_19_24}\\ -\frac{\mathrm{a61}\mathrm{B_4_17}}{\mathrm{a11}}-\mathrm{B_24_17}+\frac{\mathrm{a51}\mathrm{B_8_21}}{\mathrm{a21}}+\mathrm{B_20_21}& -\frac{\mathrm{a61}\mathrm{B_4_18}}{\mathrm{a11}}-\mathrm{B_24_18}+\frac{\mathrm{a51}\mathrm{B_8_22}}{\mathrm{a21}}+\mathrm{B_20_22}& -\frac{\mathrm{a61}\mathrm{B_4_19}}{\mathrm{a11}}-\mathrm{B_24_19}+\frac{\mathrm{a51}\mathrm{B_8_23}}{\mathrm{a21}}+\mathrm{B_20_23}& -\frac{\mathrm{a61}\mathrm{B_4_20}}{\mathrm{a11}}-\mathrm{B_24_20}+\frac{\mathrm{a51}\mathrm{B_8_24}}{\mathrm{a21}}+\mathrm{B_20_24}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_17_2}& \mathrm{C_17_1}+\mathrm{C_21_1}+\mathrm{C_17_3}\\ \mathrm{C_18_2}& \mathrm{C_18_1}+\mathrm{C_22_1}+\mathrm{C_18_3}\\ \mathrm{C_19_2}& \mathrm{C_19_1}+\mathrm{C_23_1}+\mathrm{C_19_3}\\ \mathrm{C_20_2}& \mathrm{C_20_1}+\mathrm{C_24_1}+\mathrm{C_20_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_1_5}-\mathrm{A_3_5}+\mathrm{A_1_9}-\mathrm{A_3_9}& \mathrm{A_1_6}-\mathrm{A_3_6}+\mathrm{A_1_10}-\mathrm{A_3_10}& \mathrm{A_1_7}-\mathrm{A_3_7}+\mathrm{A_1_11}-\mathrm{A_3_11}& \mathrm{A_1_8}-\mathrm{A_3_8}+\mathrm{A_1_12}-\mathrm{A_3_12}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_9_5}+\frac{\mathrm{a31}\mathrm{B_21_5}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_1_17}}{\mathrm{a11}}+\mathrm{B_5_17}& \mathrm{B_9_6}+\frac{\mathrm{a31}\mathrm{B_21_6}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_1_18}}{\mathrm{a11}}+\mathrm{B_5_18}& \mathrm{B_9_7}+\frac{\mathrm{a31}\mathrm{B_21_7}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_1_19}}{\mathrm{a11}}+\mathrm{B_5_19}& \mathrm{B_9_8}+\frac{\mathrm{a31}\mathrm{B_21_8}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_1_20}}{\mathrm{a11}}+\mathrm{B_5_20}\\ \mathrm{B_10_5}+\frac{\mathrm{a31}\mathrm{B_22_5}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_2_17}}{\mathrm{a11}}+\mathrm{B_6_17}& \mathrm{B_10_6}+\frac{\mathrm{a31}\mathrm{B_22_6}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_2_18}}{\mathrm{a11}}+\mathrm{B_6_18}& \mathrm{B_10_7}+\frac{\mathrm{a31}\mathrm{B_22_7}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_2_19}}{\mathrm{a11}}+\mathrm{B_6_19}& \mathrm{B_10_8}+\frac{\mathrm{a31}\mathrm{B_22_8}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_2_20}}{\mathrm{a11}}+\mathrm{B_6_20}\\ \mathrm{B_11_5}+\frac{\mathrm{a31}\mathrm{B_23_5}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_3_17}}{\mathrm{a11}}+\mathrm{B_7_17}& \mathrm{B_11_6}+\frac{\mathrm{a31}\mathrm{B_23_6}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_3_18}}{\mathrm{a11}}+\mathrm{B_7_18}& \mathrm{B_11_7}+\frac{\mathrm{a31}\mathrm{B_23_7}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_3_19}}{\mathrm{a11}}+\mathrm{B_7_19}& \mathrm{B_11_8}+\frac{\mathrm{a31}\mathrm{B_23_8}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_3_20}}{\mathrm{a11}}+\mathrm{B_7_20}\\ \mathrm{B_12_5}+\frac{\mathrm{a31}\mathrm{B_24_5}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_4_17}}{\mathrm{a11}}+\mathrm{B_8_17}& \mathrm{B_12_6}+\frac{\mathrm{a31}\mathrm{B_24_6}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_4_18}}{\mathrm{a11}}+\mathrm{B_8_18}& \mathrm{B_12_7}+\frac{\mathrm{a31}\mathrm{B_24_7}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_4_19}}{\mathrm{a11}}+\mathrm{B_8_19}& \mathrm{B_12_8}+\frac{\mathrm{a31}\mathrm{B_24_8}}{\mathrm{a61}}+\frac{\mathrm{a21}\mathrm{B_4_20}}{\mathrm{a11}}+\mathrm{B_8_20}\end{array}\right),\left(\begin{array}{c}\mathrm{C_5_1}+\mathrm{C_9_1}\\ \mathrm{C_6_1}+\mathrm{C_10_1}\\ \mathrm{C_11_1}+\mathrm{C_7_1}\\ \mathrm{C_8_1}+\mathrm{C_12_1}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_1_9}-\mathrm{A_3_9}+\mathrm{A_1_17}-\mathrm{A_3_17}& \mathrm{A_1_10}-\mathrm{A_3_10}+\mathrm{A_1_18}-\mathrm{A_3_18}& \mathrm{A_1_11}-\mathrm{A_3_11}+\mathrm{A_1_19}-\mathrm{A_3_19}& \mathrm{A_1_12}-\mathrm{A_3_12}+\mathrm{A_1_20}-\mathrm{A_3_20}\end{array}\right),\left(\begin{array}{cccc}-\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_1_17}}{\mathrm{a11}}-\mathrm{B_5_17}+\mathrm{B_9_17}& -\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_1_18}}{\mathrm{a11}}-\mathrm{B_5_18}+\mathrm{B_9_18}& -\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_1_19}}{\mathrm{a11}}-\mathrm{B_5_19}+\mathrm{B_9_19}& -\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_1_20}}{\mathrm{a11}}-\mathrm{B_5_20}+\mathrm{B_9_20}\\ -\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_2_17}}{\mathrm{a11}}-\mathrm{B_6_17}+\mathrm{B_10_17}& -\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_2_18}}{\mathrm{a11}}-\mathrm{B_6_18}+\mathrm{B_10_18}& -\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_2_19}}{\mathrm{a11}}-\mathrm{B_6_19}+\mathrm{B_10_19}& -\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_2_20}}{\mathrm{a11}}-\mathrm{B_6_20}+\mathrm{B_10_20}\\ -\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_3_17}}{\mathrm{a11}}-\mathrm{B_7_17}+\mathrm{B_11_17}& -\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_3_18}}{\mathrm{a11}}-\mathrm{B_7_18}+\mathrm{B_11_18}& -\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_3_19}}{\mathrm{a11}}-\mathrm{B_7_19}+\mathrm{B_11_19}& -\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_3_20}}{\mathrm{a11}}-\mathrm{B_7_20}+\mathrm{B_11_20}\\ -\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_4_17}}{\mathrm{a11}}-\mathrm{B_8_17}+\mathrm{B_12_17}& -\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_4_18}}{\mathrm{a11}}-\mathrm{B_8_18}+\mathrm{B_12_18}& -\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_4_19}}{\mathrm{a11}}-\mathrm{B_8_19}+\mathrm{B_12_19}& -\frac{\left(\mathrm{a21}+\mathrm{a31}\right)\mathrm{B_4_20}}{\mathrm{a11}}-\mathrm{B_8_20}+\mathrm{B_12_20}\end{array}\right),\left(\begin{array}{c}\mathrm{C_9_1}+\mathrm{C_17_1}\\ \mathrm{C_10_1}+\mathrm{C_18_1}\\ \mathrm{C_11_1}+\mathrm{C_19_1}\\ \mathrm{C_12_1}+\mathrm{C_20_1}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_2_13}& \mathrm{A_2_14}& \mathrm{A_2_15}& \mathrm{A_2_16}\\ \mathrm{A_1_1}+\mathrm{A_1_5}-\mathrm{A_1_13}+\mathrm{A_3_13}& \mathrm{A_1_2}+\mathrm{A_1_6}-\mathrm{A_1_14}+\mathrm{A_3_14}& \mathrm{A_1_3}+\mathrm{A_1_7}-\mathrm{A_1_15}+\mathrm{A_3_15}& \mathrm{A_1_4}+\mathrm{A_1_8}-\mathrm{A_1_16}+\mathrm{A_3_16}\end{array}\right),\left(\begin{array}{cccc}-\mathrm{B_13_1}-\frac{\mathrm{a41}\mathrm{B_17_1}}{\mathrm{a51}}+\mathrm{B_1_13}& -\mathrm{B_13_2}-\frac{\mathrm{a41}\mathrm{B_17_2}}{\mathrm{a51}}+\mathrm{B_1_14}& -\mathrm{B_13_3}-\frac{\mathrm{a41}\mathrm{B_17_3}}{\mathrm{a51}}+\mathrm{B_1_15}& -\mathrm{B_13_4}-\frac{\mathrm{a41}\mathrm{B_17_4}}{\mathrm{a51}}+\mathrm{B_1_16}\\ -\mathrm{B_14_1}-\frac{\mathrm{a41}\mathrm{B_18_1}}{\mathrm{a51}}+\mathrm{B_2_13}& -\mathrm{B_14_2}-\frac{\mathrm{a41}\mathrm{B_18_2}}{\mathrm{a51}}+\mathrm{B_2_14}& -\mathrm{B_14_3}-\frac{\mathrm{a41}\mathrm{B_18_3}}{\mathrm{a51}}+\mathrm{B_2_15}& -\mathrm{B_14_4}-\frac{\mathrm{a41}\mathrm{B_18_4}}{\mathrm{a51}}+\mathrm{B_2_16}\\ -\mathrm{B_15_1}-\frac{\mathrm{a41}\mathrm{B_19_1}}{\mathrm{a51}}+\mathrm{B_3_13}& -\mathrm{B_15_2}-\frac{\mathrm{a41}\mathrm{B_19_2}}{\mathrm{a51}}+\mathrm{B_3_14}& -\mathrm{B_15_3}-\frac{\mathrm{a41}\mathrm{B_19_3}}{\mathrm{a51}}+\mathrm{B_3_15}& -\mathrm{B_15_4}-\frac{\mathrm{a41}\mathrm{B_19_4}}{\mathrm{a51}}+\mathrm{B_3_16}\\ -\mathrm{B_16_1}-\frac{\mathrm{a41}\mathrm{B_20_1}}{\mathrm{a51}}+\mathrm{B_4_13}& -\mathrm{B_16_2}-\frac{\mathrm{a41}\mathrm{B_20_2}}{\mathrm{a51}}+\mathrm{B_4_14}& -\mathrm{B_16_3}-\frac{\mathrm{a41}\mathrm{B_20_3}}{\mathrm{a51}}+\mathrm{B_4_15}& -\mathrm{B_16_4}-\frac{\mathrm{a41}\mathrm{B_20_4}}{\mathrm{a51}}+\mathrm{B_4_16}\end{array}\right),\left(\begin{array}{cc}-\mathrm{C_1_2}-\mathrm{C_5_2}+\mathrm{C_13_2}& \mathrm{C_13_1}-\mathrm{C_1_3}-\mathrm{C_5_3}+\mathrm{C_13_3}\\ -\mathrm{C_2_2}-\mathrm{C_6_2}+\mathrm{C_14_2}& \mathrm{C_14_1}-\mathrm{C_2_3}-\mathrm{C_6_3}+\mathrm{C_14_3}\\ -\mathrm{C_3_2}-\mathrm{C_7_2}+\mathrm{C_15_2}& \mathrm{C_15_1}-\mathrm{C_3_3}-\mathrm{C_7_3}+\mathrm{C_15_3}\\ -\mathrm{C_4_2}-\mathrm{C_8_2}+\mathrm{C_16_2}& \mathrm{C_16_1}-\mathrm{C_4_3}-\mathrm{C_8_3}+\mathrm{C_16_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_1_17}-\mathrm{A_3_17}+\mathrm{A_1_21}-\mathrm{A_3_21}& \mathrm{A_1_18}-\mathrm{A_3_18}+\mathrm{A_1_22}-\mathrm{A_3_22}& \mathrm{A_1_19}-\mathrm{A_3_19}+\mathrm{A_1_23}-\mathrm{A_3_23}& \mathrm{A_1_20}-\mathrm{A_3_20}+\mathrm{A_1_24}-\mathrm{A_3_24}\end{array}\right),\left(\begin{array}{cccc}\frac{\mathrm{a61}\mathrm{B_1_17}}{\mathrm{a11}}+\mathrm{B_21_17}& \frac{\mathrm{a61}\mathrm{B_1_18}}{\mathrm{a11}}+\mathrm{B_21_18}& \frac{\mathrm{a61}\mathrm{B_1_19}}{\mathrm{a11}}+\mathrm{B_21_19}& \frac{\mathrm{a61}\mathrm{B_1_20}}{\mathrm{a11}}+\mathrm{B_21_20}\\ \frac{\mathrm{a61}\mathrm{B_2_17}}{\mathrm{a11}}+\mathrm{B_22_17}& \frac{\mathrm{a61}\mathrm{B_2_18}}{\mathrm{a11}}+\mathrm{B_22_18}& \frac{\mathrm{a61}\mathrm{B_2_19}}{\mathrm{a11}}+\mathrm{B_22_19}& \frac{\mathrm{a61}\mathrm{B_2_20}}{\mathrm{a11}}+\mathrm{B_22_20}\\ \frac{\mathrm{a61}\mathrm{B_3_17}}{\mathrm{a11}}+\mathrm{B_23_17}& \frac{\mathrm{a61}\mathrm{B_3_18}}{\mathrm{a11}}+\mathrm{B_23_18}& \frac{\mathrm{a61}\mathrm{B_3_19}}{\mathrm{a11}}+\mathrm{B_23_19}& \frac{\mathrm{a61}\mathrm{B_3_20}}{\mathrm{a11}}+\mathrm{B_23_20}\\ \frac{\mathrm{a61}\mathrm{B_4_17}}{\mathrm{a11}}+\mathrm{B_24_17}& \frac{\mathrm{a61}\mathrm{B_4_18}}{\mathrm{a11}}+\mathrm{B_24_18}& \frac{\mathrm{a61}\mathrm{B_4_19}}{\mathrm{a11}}+\mathrm{B_24_19}& \frac{\mathrm{a61}\mathrm{B_4_20}}{\mathrm{a11}}+\mathrm{B_24_20}\end{array}\right),\left(\begin{array}{c}\mathrm{C_17_1}+\mathrm{C_21_1}\\ \mathrm{C_18_1}+\mathrm{C_22_1}\\ \mathrm{C_19_1}+\mathrm{C_23_1}\\ \mathrm{C_20_1}+\mathrm{C_24_1}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}-\mathrm{A_2_9}-\mathrm{A_2_13}+\mathrm{A_2_21}& -\mathrm{A_2_10}-\mathrm{A_2_14}+\mathrm{A_2_22}& -\mathrm{A_2_11}-\mathrm{A_2_15}+\mathrm{A_2_23}& -\mathrm{A_2_12}-\mathrm{A_2_16}+\mathrm{A_2_24}\\ \mathrm{A_1_9}-\mathrm{A_3_9}+\mathrm{A_1_13}-\mathrm{A_3_13}+\mathrm{A_3_21}& \mathrm{A_1_10}-\mathrm{A_3_10}+\mathrm{A_1_14}-\mathrm{A_3_14}+\mathrm{A_3_22}& \mathrm{A_1_11}-\mathrm{A_3_11}+\mathrm{A_1_15}-\mathrm{A_3_15}+\mathrm{A_3_23}& \mathrm{A_1_12}-\mathrm{A_3_12}+\mathrm{A_1_16}-\mathrm{A_3_16}+\mathrm{A_3_24}\end{array}\right),\left(\begin{array}{cccc}-\mathrm{B_21_9}+\frac{\mathrm{a31}\mathrm{B_5_21}}{\mathrm{a21}}+\mathrm{B_9_21}& -\mathrm{B_21_10}+\frac{\mathrm{a31}\mathrm{B_5_22}}{\mathrm{a21}}+\mathrm{B_9_22}& -\mathrm{B_21_11}+\frac{\mathrm{a31}\mathrm{B_5_23}}{\mathrm{a21}}+\mathrm{B_9_23}& -\mathrm{B_21_12}+\frac{\mathrm{a31}\mathrm{B_5_24}}{\mathrm{a21}}+\mathrm{B_9_24}\\ -\mathrm{B_22_9}+\frac{\mathrm{a31}\mathrm{B_6_21}}{\mathrm{a21}}+\mathrm{B_10_21}& -\mathrm{B_22_10}+\frac{\mathrm{a31}\mathrm{B_6_22}}{\mathrm{a21}}+\mathrm{B_10_22}& -\mathrm{B_22_11}+\frac{\mathrm{a31}\mathrm{B_6_23}}{\mathrm{a21}}+\mathrm{B_10_23}& -\mathrm{B_22_12}+\frac{\mathrm{a31}\mathrm{B_6_24}}{\mathrm{a21}}+\mathrm{B_10_24}\\ -\mathrm{B_23_9}+\frac{\mathrm{a31}\mathrm{B_7_21}}{\mathrm{a21}}+\mathrm{B_11_21}& -\mathrm{B_23_10}+\frac{\mathrm{a31}\mathrm{B_7_22}}{\mathrm{a21}}+\mathrm{B_11_22}& -\mathrm{B_23_11}+\frac{\mathrm{a31}\mathrm{B_7_23}}{\mathrm{a21}}+\mathrm{B_11_23}& -\mathrm{B_23_12}+\frac{\mathrm{a31}\mathrm{B_7_24}}{\mathrm{a21}}+\mathrm{B_11_24}\\ -\mathrm{B_24_9}+\frac{\mathrm{a31}\mathrm{B_8_21}}{\mathrm{a21}}+\mathrm{B_12_21}& -\mathrm{B_24_10}+\frac{\mathrm{a31}\mathrm{B_8_22}}{\mathrm{a21}}+\mathrm{B_12_22}& -\mathrm{B_24_11}+\frac{\mathrm{a31}\mathrm{B_8_23}}{\mathrm{a21}}+\mathrm{B_12_23}& -\mathrm{B_24_12}+\frac{\mathrm{a31}\mathrm{B_8_24}}{\mathrm{a21}}+\mathrm{B_12_24}\end{array}\right),\left(\begin{array}{cc}-\mathrm{C_9_2}-\mathrm{C_13_2}& -\mathrm{C_9_1}-\mathrm{C_13_1}+\mathrm{C_21_1}-\mathrm{C_9_3}-\mathrm{C_13_3}\\ -\mathrm{C_10_2}-\mathrm{C_14_2}& -\mathrm{C_10_1}-\mathrm{C_14_1}+\mathrm{C_22_1}-\mathrm{C_10_3}-\mathrm{C_14_3}\\ -\mathrm{C_11_2}-\mathrm{C_15_2}& -\mathrm{C_11_1}-\mathrm{C_15_1}+\mathrm{C_23_1}-\mathrm{C_11_3}-\mathrm{C_15_3}\\ -\mathrm{C_12_2}-\mathrm{C_16_2}& -\mathrm{C_12_1}-\mathrm{C_16_1}+\mathrm{C_24_1}-\mathrm{C_12_3}-\mathrm{C_16_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}-\mathrm{A_2_1}-\mathrm{A_2_5}+\mathrm{A_2_13}& -\mathrm{A_2_2}-\mathrm{A_2_6}+\mathrm{A_2_14}& -\mathrm{A_2_3}-\mathrm{A_2_7}+\mathrm{A_2_15}& -\mathrm{A_2_4}-\mathrm{A_2_8}+\mathrm{A_2_16}\\ \mathrm{A_1_1}-\mathrm{A_3_1}+\mathrm{A_1_5}-\mathrm{A_3_5}-\mathrm{A_1_13}+\mathrm{A_3_13}& \mathrm{A_1_2}-\mathrm{A_3_2}+\mathrm{A_1_6}-\mathrm{A_3_6}-\mathrm{A_1_14}+\mathrm{A_3_14}& \mathrm{A_1_3}-\mathrm{A_3_3}+\mathrm{A_1_7}-\mathrm{A_3_7}-\mathrm{A_1_15}+\mathrm{A_3_15}& \mathrm{A_1_4}-\mathrm{A_3_4}+\mathrm{A_1_8}-\mathrm{A_3_8}-\mathrm{A_1_16}+\mathrm{A_3_16}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_1_13}& \mathrm{B_1_14}& \mathrm{B_1_15}& \mathrm{B_1_16}\\ \mathrm{B_2_13}& \mathrm{B_2_14}& \mathrm{B_2_15}& \mathrm{B_2_16}\\ \mathrm{B_3_13}& \mathrm{B_3_14}& \mathrm{B_3_15}& \mathrm{B_3_16}\\ \mathrm{B_4_13}& \mathrm{B_4_14}& \mathrm{B_4_15}& \mathrm{B_4_16}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_1_2}+\mathrm{C_5_2}-\mathrm{C_13_2}& \mathrm{C_1_3}+\mathrm{C_5_3}-\mathrm{C_13_3}\\ \mathrm{C_2_2}+\mathrm{C_6_2}-\mathrm{C_14_2}& \mathrm{C_2_3}+\mathrm{C_6_3}-\mathrm{C_14_3}\\ \mathrm{C_3_2}+\mathrm{C_7_2}-\mathrm{C_15_2}& \mathrm{C_3_3}+\mathrm{C_7_3}-\mathrm{C_15_3}\\ \mathrm{C_4_2}+\mathrm{C_8_2}-\mathrm{C_16_2}& \mathrm{C_4_3}+\mathrm{C_8_3}-\mathrm{C_16_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_2_1}\mathrm{a11}-\mathrm{A_2_13}\mathrm{a41}+\mathrm{A_2_17}\mathrm{a51}-\mathrm{A_2_21}\mathrm{a61}-\mathrm{A_2_5}\mathrm{a21}+\mathrm{A_2_9}\mathrm{a31}& \mathrm{A_2_10}\mathrm{a31}-\mathrm{A_2_14}\mathrm{a41}+\mathrm{A_2_18}\mathrm{a51}+\mathrm{A_2_2}\mathrm{a11}-\mathrm{A_2_22}\mathrm{a61}-\mathrm{A_2_6}\mathrm{a21}& \mathrm{A_2_11}\mathrm{a31}-\mathrm{A_2_15}\mathrm{a41}+\mathrm{A_2_19}\mathrm{a51}-\mathrm{A_2_23}\mathrm{a61}+\mathrm{A_2_3}\mathrm{a11}-\mathrm{A_2_7}\mathrm{a21}& \mathrm{A_2_12}\mathrm{a31}-\mathrm{A_2_16}\mathrm{a41}+\mathrm{A_2_20}\mathrm{a51}-\mathrm{A_2_24}\mathrm{a61}+\mathrm{A_2_4}\mathrm{a11}-\mathrm{A_2_8}\mathrm{a21}\\ \mathrm{A_3_1}\mathrm{a11}-\mathrm{A_3_13}\mathrm{a41}+\mathrm{A_3_17}\mathrm{a51}-\mathrm{A_3_21}\mathrm{a61}-\mathrm{A_3_5}\mathrm{a21}+\mathrm{A_3_9}\mathrm{a31}& \mathrm{A_3_10}\mathrm{a31}-\mathrm{A_3_14}\mathrm{a41}+\mathrm{A_3_18}\mathrm{a51}+\mathrm{A_3_2}\mathrm{a11}-\mathrm{A_3_22}\mathrm{a61}-\mathrm{A_3_6}\mathrm{a21}& \mathrm{A_3_11}\mathrm{a31}-\mathrm{A_3_15}\mathrm{a41}+\mathrm{A_3_19}\mathrm{a51}-\mathrm{A_3_23}\mathrm{a61}+\mathrm{A_3_3}\mathrm{a11}-\mathrm{A_3_7}\mathrm{a21}& \mathrm{A_3_12}\mathrm{a31}-\mathrm{A_3_16}\mathrm{a41}+\mathrm{A_3_20}\mathrm{a51}-\mathrm{A_3_24}\mathrm{a61}+\mathrm{A_3_4}\mathrm{a11}-\mathrm{A_3_8}\mathrm{a21}\end{array}\right),\left(\begin{array}{cccc}\frac{\mathrm{B_17_1}}{\mathrm{a51}}+\frac{\mathrm{B_5_21}}{\mathrm{a21}}+\mathrm{B_1_25}-\mathrm{B_5_25}+\frac{\left(\mathrm{a21}+\mathrm{a11}-\mathrm{a51}-1\right)\mathrm{B_13_25}}{\mathrm{a41}}-\mathrm{B_17_25}& \frac{\mathrm{B_17_2}}{\mathrm{a51}}+\frac{\mathrm{B_5_22}}{\mathrm{a21}}+\mathrm{B_1_26}-\mathrm{B_5_26}+\frac{\left(\mathrm{a21}+\mathrm{a11}-\mathrm{a51}-1\right)\mathrm{B_13_26}}{\mathrm{a41}}-\mathrm{B_17_26}& \frac{\mathrm{B_17_3}}{\mathrm{a51}}+\frac{\mathrm{B_5_23}}{\mathrm{a21}}+\mathrm{B_1_27}-\mathrm{B_5_27}+\frac{\left(\mathrm{a21}+\mathrm{a11}-\mathrm{a51}-1\right)\mathrm{B_13_27}}{\mathrm{a41}}-\mathrm{B_17_27}& \frac{\mathrm{B_17_4}}{\mathrm{a51}}+\frac{\mathrm{B_5_24}}{\mathrm{a21}}+\mathrm{B_1_28}-\mathrm{B_5_28}+\frac{\left(\mathrm{a21}+\mathrm{a11}-\mathrm{a51}-1\right)\mathrm{B_13_28}}{\mathrm{a41}}-\mathrm{B_17_28}\\ \frac{\mathrm{B_18_1}}{\mathrm{a51}}+\frac{\mathrm{B_6_21}}{\mathrm{a21}}+\mathrm{B_2_25}-\mathrm{B_6_25}+\frac{\left(\mathrm{a21}+\mathrm{a11}-\mathrm{a51}-1\right)\mathrm{B_14_25}}{\mathrm{a41}}-\mathrm{B_18_25}& \frac{\mathrm{B_18_2}}{\mathrm{a51}}+\frac{\mathrm{B_6_22}}{\mathrm{a21}}+\mathrm{B_2_26}-\mathrm{B_6_26}+\frac{\left(\mathrm{a21}+\mathrm{a11}-\mathrm{a51}-1\right)\mathrm{B_14_26}}{\mathrm{a41}}-\mathrm{B_18_26}& \frac{\mathrm{B_18_3}}{\mathrm{a51}}+\frac{\mathrm{B_6_23}}{\mathrm{a21}}+\mathrm{B_2_27}-\mathrm{B_6_27}+\frac{\left(\mathrm{a21}+\mathrm{a11}-\mathrm{a51}-1\right)\mathrm{B_14_27}}{\mathrm{a41}}-\mathrm{B_18_27}& \frac{\mathrm{B_18_4}}{\mathrm{a51}}+\frac{\mathrm{B_6_24}}{\mathrm{a21}}+\mathrm{B_2_28}-\mathrm{B_6_28}+\frac{\left(\mathrm{a21}+\mathrm{a11}-\mathrm{a51}-1\right)\mathrm{B_14_28}}{\mathrm{a41}}-\mathrm{B_18_28}\\ \frac{\mathrm{B_19_1}}{\mathrm{a51}}+\frac{\mathrm{B_7_21}}{\mathrm{a21}}+\mathrm{B_3_25}-\mathrm{B_7_25}+\frac{\left(\mathrm{a21}+\mathrm{a11}-\mathrm{a51}-1\right)\mathrm{B_15_25}}{\mathrm{a41}}-\mathrm{B_19_25}& \frac{\mathrm{B_19_2}}{\mathrm{a51}}+\frac{\mathrm{B_7_22}}{\mathrm{a21}}+\mathrm{B_3_26}-\mathrm{B_7_26}+\frac{\left(\mathrm{a21}+\mathrm{a11}-\mathrm{a51}-1\right)\mathrm{B_15_26}}{\mathrm{a41}}-\mathrm{B_19_26}& \frac{\mathrm{B_19_3}}{\mathrm{a51}}+\frac{\mathrm{B_7_23}}{\mathrm{a21}}+\mathrm{B_3_27}-\mathrm{B_7_27}+\frac{\left(\mathrm{a21}+\mathrm{a11}-\mathrm{a51}-1\right)\mathrm{B_15_27}}{\mathrm{a41}}-\mathrm{B_19_27}& \frac{\mathrm{B_19_4}}{\mathrm{a51}}+\frac{\mathrm{B_7_24}}{\mathrm{a21}}+\mathrm{B_3_28}-\mathrm{B_7_28}+\frac{\left(\mathrm{a21}+\mathrm{a11}-\mathrm{a51}-1\right)\mathrm{B_15_28}}{\mathrm{a41}}-\mathrm{B_19_28}\\ \frac{\mathrm{B_20_1}}{\mathrm{a51}}+\frac{\mathrm{B_8_21}}{\mathrm{a21}}+\mathrm{B_4_25}-\mathrm{B_8_25}+\frac{\left(\mathrm{a21}+\mathrm{a11}-\mathrm{a51}-1\right)\mathrm{B_16_25}}{\mathrm{a41}}-\mathrm{B_20_25}& \frac{\mathrm{B_20_2}}{\mathrm{a51}}+\frac{\mathrm{B_8_22}}{\mathrm{a21}}+\mathrm{B_4_26}-\mathrm{B_8_26}+\frac{\left(\mathrm{a21}+\mathrm{a11}-\mathrm{a51}-1\right)\mathrm{B_16_26}}{\mathrm{a41}}-\mathrm{B_20_26}& \frac{\mathrm{B_20_3}}{\mathrm{a51}}+\frac{\mathrm{B_8_23}}{\mathrm{a21}}+\mathrm{B_4_27}-\mathrm{B_8_27}+\frac{\left(\mathrm{a21}+\mathrm{a11}-\mathrm{a51}-1\right)\mathrm{B_16_27}}{\mathrm{a41}}-\mathrm{B_20_27}& \frac{\mathrm{B_20_4}}{\mathrm{a51}}+\frac{\mathrm{B_8_24}}{\mathrm{a21}}+\mathrm{B_4_28}-\mathrm{B_8_28}+\frac{\left(\mathrm{a21}+\mathrm{a11}-\mathrm{a51}-1\right)\mathrm{B_16_28}}{\mathrm{a41}}-\mathrm{B_20_28}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_25_2}& \mathrm{C_25_1}+\mathrm{C_25_3}\\ \mathrm{C_26_2}& \mathrm{C_26_1}+\mathrm{C_26_3}\\ \mathrm{C_27_2}& \mathrm{C_27_1}+\mathrm{C_27_3}\\ \mathrm{C_28_2}& \mathrm{C_28_1}+\mathrm{C_28_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}-\frac{\mathrm{A_1_1}\mathrm{a11}}{\mathrm{a21}}+\mathrm{A_1_5}-\frac{\mathrm{A_1_9}\mathrm{a31}}{\mathrm{a21}}+\frac{\mathrm{A_1_13}\mathrm{a41}}{\mathrm{a21}}-\frac{\mathrm{A_1_17}\mathrm{a51}}{\mathrm{a21}}-\frac{\left(-\mathrm{a61}+1\right)\mathrm{A_1_21}}{\mathrm{a21}}& -\frac{\mathrm{A_1_2}\mathrm{a11}}{\mathrm{a21}}+\mathrm{A_1_6}-\frac{\mathrm{A_1_10}\mathrm{a31}}{\mathrm{a21}}+\frac{\mathrm{A_1_14}\mathrm{a41}}{\mathrm{a21}}-\frac{\mathrm{A_1_18}\mathrm{a51}}{\mathrm{a21}}-\frac{\left(-\mathrm{a61}+1\right)\mathrm{A_1_22}}{\mathrm{a21}}& -\frac{\mathrm{A_1_3}\mathrm{a11}}{\mathrm{a21}}+\mathrm{A_1_7}-\frac{\mathrm{A_1_11}\mathrm{a31}}{\mathrm{a21}}+\frac{\mathrm{A_1_15}\mathrm{a41}}{\mathrm{a21}}-\frac{\mathrm{A_1_19}\mathrm{a51}}{\mathrm{a21}}-\frac{\left(-\mathrm{a61}+1\right)\mathrm{A_1_23}}{\mathrm{a21}}& -\frac{\mathrm{A_1_4}\mathrm{a11}}{\mathrm{a21}}+\mathrm{A_1_8}-\frac{\mathrm{A_1_12}\mathrm{a31}}{\mathrm{a21}}+\frac{\mathrm{A_1_16}\mathrm{a41}}{\mathrm{a21}}-\frac{\mathrm{A_1_20}\mathrm{a51}}{\mathrm{a21}}-\frac{\left(-\mathrm{a61}+1\right)\mathrm{A_1_24}}{\mathrm{a21}}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_5_21}& \mathrm{B_5_22}& \mathrm{B_5_23}& \mathrm{B_5_24}\\ \mathrm{B_6_21}& \mathrm{B_6_22}& \mathrm{B_6_23}& \mathrm{B_6_24}\\ \mathrm{B_7_21}& \mathrm{B_7_22}& \mathrm{B_7_23}& \mathrm{B_7_24}\\ \mathrm{B_8_21}& \mathrm{B_8_22}& \mathrm{B_8_23}& \mathrm{B_8_24}\end{array}\right),\left(\begin{array}{c}\mathrm{C_21_1}+\mathrm{C_25_1}+\mathrm{C_21_3}+\mathrm{C_25_3}\\ \mathrm{C_22_1}+\mathrm{C_26_1}+\mathrm{C_22_3}+\mathrm{C_26_3}\\ \mathrm{C_23_1}+\mathrm{C_27_1}+\mathrm{C_23_3}+\mathrm{C_27_3}\\ \mathrm{C_24_1}+\mathrm{C_28_1}+\mathrm{C_24_3}+\mathrm{C_28_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_1_1}-\frac{\mathrm{A_1_5}\mathrm{a21}}{\mathrm{a11}}+\frac{\mathrm{A_1_9}\mathrm{a31}}{\mathrm{a11}}-\frac{\mathrm{A_1_13}\mathrm{a41}}{\mathrm{a11}}+\frac{\left(\mathrm{a51}+1\right)\mathrm{A_1_17}}{\mathrm{a11}}-\frac{\mathrm{A_1_21}\mathrm{a61}}{\mathrm{a11}}& \mathrm{A_1_2}-\frac{\mathrm{A_1_6}\mathrm{a21}}{\mathrm{a11}}+\frac{\mathrm{A_1_10}\mathrm{a31}}{\mathrm{a11}}-\frac{\mathrm{A_1_14}\mathrm{a41}}{\mathrm{a11}}+\frac{\left(\mathrm{a51}+1\right)\mathrm{A_1_18}}{\mathrm{a11}}-\frac{\mathrm{A_1_22}\mathrm{a61}}{\mathrm{a11}}& \mathrm{A_1_3}-\frac{\mathrm{A_1_7}\mathrm{a21}}{\mathrm{a11}}+\frac{\mathrm{A_1_11}\mathrm{a31}}{\mathrm{a11}}-\frac{\mathrm{A_1_15}\mathrm{a41}}{\mathrm{a11}}+\frac{\left(\mathrm{a51}+1\right)\mathrm{A_1_19}}{\mathrm{a11}}-\frac{\mathrm{A_1_23}\mathrm{a61}}{\mathrm{a11}}& \mathrm{A_1_4}-\frac{\mathrm{A_1_8}\mathrm{a21}}{\mathrm{a11}}+\frac{\mathrm{A_1_12}\mathrm{a31}}{\mathrm{a11}}-\frac{\mathrm{A_1_16}\mathrm{a41}}{\mathrm{a11}}+\frac{\left(\mathrm{a51}+1\right)\mathrm{A_1_20}}{\mathrm{a11}}-\frac{\mathrm{A_1_24}\mathrm{a61}}{\mathrm{a11}}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_1_17}& \mathrm{B_1_18}& \mathrm{B_1_19}& \mathrm{B_1_20}\\ \mathrm{B_2_17}& \mathrm{B_2_18}& \mathrm{B_2_19}& \mathrm{B_2_20}\\ \mathrm{B_3_17}& \mathrm{B_3_18}& \mathrm{B_3_19}& \mathrm{B_3_20}\\ \mathrm{B_4_17}& \mathrm{B_4_18}& \mathrm{B_4_19}& \mathrm{B_4_20}\end{array}\right),\left(\begin{array}{c}\mathrm{C_17_1}+\mathrm{C_25_1}\\ \mathrm{C_18_1}+\mathrm{C_26_1}\\ \mathrm{C_19_1}+\mathrm{C_27_1}\\ \mathrm{C_20_1}+\mathrm{C_28_1}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_1_1}\mathrm{a11}+\left(-\mathrm{a21}+1\right)\mathrm{A_1_5}+\mathrm{A_1_9}\mathrm{a31}-\mathrm{A_1_13}\mathrm{a41}+\mathrm{A_1_17}\mathrm{a51}-\mathrm{A_1_21}\mathrm{a61}& \mathrm{A_1_2}\mathrm{a11}+\left(-\mathrm{a21}+1\right)\mathrm{A_1_6}+\mathrm{A_1_10}\mathrm{a31}-\mathrm{A_1_14}\mathrm{a41}+\mathrm{A_1_18}\mathrm{a51}-\mathrm{A_1_22}\mathrm{a61}& \mathrm{A_1_3}\mathrm{a11}+\left(-\mathrm{a21}+1\right)\mathrm{A_1_7}+\mathrm{A_1_11}\mathrm{a31}-\mathrm{A_1_15}\mathrm{a41}+\mathrm{A_1_19}\mathrm{a51}-\mathrm{A_1_23}\mathrm{a61}& \mathrm{A_1_4}\mathrm{a11}+\left(-\mathrm{a21}+1\right)\mathrm{A_1_8}+\mathrm{A_1_12}\mathrm{a31}-\mathrm{A_1_16}\mathrm{a41}+\mathrm{A_1_20}\mathrm{a51}-\mathrm{A_1_24}\mathrm{a61}\end{array}\right),\left(\begin{array}{cccc}-\frac{\mathrm{B_17_1}}{\mathrm{a51}}-\frac{\mathrm{B_21_5}}{\mathrm{a61}}& -\frac{\mathrm{B_17_2}}{\mathrm{a51}}-\frac{\mathrm{B_21_6}}{\mathrm{a61}}& -\frac{\mathrm{B_17_3}}{\mathrm{a51}}-\frac{\mathrm{B_21_7}}{\mathrm{a61}}& -\frac{\mathrm{B_17_4}}{\mathrm{a51}}-\frac{\mathrm{B_21_8}}{\mathrm{a61}}\\ -\frac{\mathrm{B_18_1}}{\mathrm{a51}}-\frac{\mathrm{B_22_5}}{\mathrm{a61}}& -\frac{\mathrm{B_18_2}}{\mathrm{a51}}-\frac{\mathrm{B_22_6}}{\mathrm{a61}}& -\frac{\mathrm{B_18_3}}{\mathrm{a51}}-\frac{\mathrm{B_22_7}}{\mathrm{a61}}& -\frac{\mathrm{B_18_4}}{\mathrm{a51}}-\frac{\mathrm{B_22_8}}{\mathrm{a61}}\\ -\frac{\mathrm{B_19_1}}{\mathrm{a51}}-\frac{\mathrm{B_23_5}}{\mathrm{a61}}& -\frac{\mathrm{B_19_2}}{\mathrm{a51}}-\frac{\mathrm{B_23_6}}{\mathrm{a61}}& -\frac{\mathrm{B_19_3}}{\mathrm{a51}}-\frac{\mathrm{B_23_7}}{\mathrm{a61}}& -\frac{\mathrm{B_19_4}}{\mathrm{a51}}-\frac{\mathrm{B_23_8}}{\mathrm{a61}}\\ -\frac{\mathrm{B_20_1}}{\mathrm{a51}}-\frac{\mathrm{B_24_5}}{\mathrm{a61}}& -\frac{\mathrm{B_20_2}}{\mathrm{a51}}-\frac{\mathrm{B_24_6}}{\mathrm{a61}}& -\frac{\mathrm{B_20_3}}{\mathrm{a51}}-\frac{\mathrm{B_24_7}}{\mathrm{a61}}& -\frac{\mathrm{B_20_4}}{\mathrm{a51}}-\frac{\mathrm{B_24_8}}{\mathrm{a61}}\end{array}\right),\left(\begin{array}{c}\mathrm{C_5_1}+\mathrm{C_25_1}\\ \mathrm{C_6_1}+\mathrm{C_26_1}\\ \mathrm{C_27_1}+\mathrm{C_7_1}\\ \mathrm{C_8_1}+\mathrm{C_28_1}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_2_1}\mathrm{a11}-\mathrm{A_2_13}\mathrm{a41}-\mathrm{A_2_5}\mathrm{a21}+\mathrm{A_2_9}\mathrm{a31}+\left(\mathrm{a51}+1\right)\mathrm{A_2_17}-\mathrm{A_2_21}\mathrm{a61}& \mathrm{A_2_10}\mathrm{a31}-\mathrm{A_2_14}\mathrm{a41}+\mathrm{A_2_2}\mathrm{a11}-\mathrm{A_2_6}\mathrm{a21}+\left(\mathrm{a51}+1\right)\mathrm{A_2_18}-\mathrm{A_2_22}\mathrm{a61}& \mathrm{A_2_11}\mathrm{a31}-\mathrm{A_2_15}\mathrm{a41}+\mathrm{A_2_3}\mathrm{a11}-\mathrm{A_2_7}\mathrm{a21}+\left(\mathrm{a51}+1\right)\mathrm{A_2_19}-\mathrm{A_2_23}\mathrm{a61}& \mathrm{A_2_12}\mathrm{a31}-\mathrm{A_2_16}\mathrm{a41}+\mathrm{A_2_4}\mathrm{a11}-\mathrm{A_2_8}\mathrm{a21}+\left(\mathrm{a51}+1\right)\mathrm{A_2_20}-\mathrm{A_2_24}\mathrm{a61}\\ \mathrm{A_3_1}\mathrm{a11}-\mathrm{A_3_13}\mathrm{a41}-\mathrm{A_3_5}\mathrm{a21}+\mathrm{A_3_9}\mathrm{a31}+\left(\mathrm{a51}+1\right)\mathrm{A_3_17}-\mathrm{A_3_21}\mathrm{a61}& \mathrm{A_3_10}\mathrm{a31}-\mathrm{A_3_14}\mathrm{a41}+\mathrm{A_3_2}\mathrm{a11}-\mathrm{A_3_6}\mathrm{a21}+\left(\mathrm{a51}+1\right)\mathrm{A_3_18}-\mathrm{A_3_22}\mathrm{a61}& \mathrm{A_3_11}\mathrm{a31}-\mathrm{A_3_15}\mathrm{a41}+\mathrm{A_3_3}\mathrm{a11}-\mathrm{A_3_7}\mathrm{a21}+\left(\mathrm{a51}+1\right)\mathrm{A_3_19}-\mathrm{A_3_23}\mathrm{a61}& \mathrm{A_3_12}\mathrm{a31}-\mathrm{A_3_16}\mathrm{a41}+\mathrm{A_3_4}\mathrm{a11}-\mathrm{A_3_8}\mathrm{a21}+\left(\mathrm{a51}+1\right)\mathrm{A_3_20}-\mathrm{A_3_24}\mathrm{a61}\end{array}\right),\left(\begin{array}{cccc}\frac{\mathrm{a51}\mathrm{B_13_25}}{\mathrm{a41}}+\mathrm{B_17_25}& \frac{\mathrm{a51}\mathrm{B_13_26}}{\mathrm{a41}}+\mathrm{B_17_26}& \frac{\mathrm{a51}\mathrm{B_13_27}}{\mathrm{a41}}+\mathrm{B_17_27}& \frac{\mathrm{a51}\mathrm{B_13_28}}{\mathrm{a41}}+\mathrm{B_17_28}\\ \frac{\mathrm{a51}\mathrm{B_14_25}}{\mathrm{a41}}+\mathrm{B_18_25}& \frac{\mathrm{a51}\mathrm{B_14_26}}{\mathrm{a41}}+\mathrm{B_18_26}& \frac{\mathrm{a51}\mathrm{B_14_27}}{\mathrm{a41}}+\mathrm{B_18_27}& \frac{\mathrm{a51}\mathrm{B_14_28}}{\mathrm{a41}}+\mathrm{B_18_28}\\ \frac{\mathrm{a51}\mathrm{B_15_25}}{\mathrm{a41}}+\mathrm{B_19_25}& \frac{\mathrm{a51}\mathrm{B_15_26}}{\mathrm{a41}}+\mathrm{B_19_26}& \frac{\mathrm{a51}\mathrm{B_15_27}}{\mathrm{a41}}+\mathrm{B_19_27}& \frac{\mathrm{a51}\mathrm{B_15_28}}{\mathrm{a41}}+\mathrm{B_19_28}\\ \frac{\mathrm{a51}\mathrm{B_16_25}}{\mathrm{a41}}+\mathrm{B_20_25}& \frac{\mathrm{a51}\mathrm{B_16_26}}{\mathrm{a41}}+\mathrm{B_20_26}& \frac{\mathrm{a51}\mathrm{B_16_27}}{\mathrm{a41}}+\mathrm{B_20_27}& \frac{\mathrm{a51}\mathrm{B_16_28}}{\mathrm{a41}}+\mathrm{B_20_28}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_17_2}+\mathrm{C_25_2}& \mathrm{C_17_3}+\mathrm{C_25_3}\\ \mathrm{C_18_2}+\mathrm{C_26_2}& \mathrm{C_18_3}+\mathrm{C_26_3}\\ \mathrm{C_19_2}+\mathrm{C_27_2}& \mathrm{C_19_3}+\mathrm{C_27_3}\\ \mathrm{C_20_2}+\mathrm{C_28_2}& \mathrm{C_20_3}+\mathrm{C_28_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_2_1}\mathrm{a11}+\left(-\mathrm{a21}+1\right)\mathrm{A_2_5}+\mathrm{A_2_9}\mathrm{a31}-\mathrm{A_2_13}\mathrm{a41}+\mathrm{A_2_17}\mathrm{a51}-\mathrm{A_2_21}\mathrm{a61}& \mathrm{A_2_2}\mathrm{a11}+\left(-\mathrm{a21}+1\right)\mathrm{A_2_6}+\mathrm{A_2_10}\mathrm{a31}-\mathrm{A_2_14}\mathrm{a41}+\mathrm{A_2_18}\mathrm{a51}-\mathrm{A_2_22}\mathrm{a61}& \mathrm{A_2_3}\mathrm{a11}+\left(-\mathrm{a21}+1\right)\mathrm{A_2_7}+\mathrm{A_2_11}\mathrm{a31}-\mathrm{A_2_15}\mathrm{a41}+\mathrm{A_2_19}\mathrm{a51}-\mathrm{A_2_23}\mathrm{a61}& \mathrm{A_2_4}\mathrm{a11}+\left(-\mathrm{a21}+1\right)\mathrm{A_2_8}+\mathrm{A_2_12}\mathrm{a31}-\mathrm{A_2_16}\mathrm{a41}+\mathrm{A_2_20}\mathrm{a51}-\mathrm{A_2_24}\mathrm{a61}\\ \mathrm{A_3_1}\mathrm{a11}+\left(-\mathrm{a21}+1\right)\mathrm{A_3_5}+\mathrm{A_3_9}\mathrm{a31}-\mathrm{A_3_13}\mathrm{a41}+\mathrm{A_3_17}\mathrm{a51}-\mathrm{A_3_21}\mathrm{a61}& \mathrm{A_3_2}\mathrm{a11}+\left(-\mathrm{a21}+1\right)\mathrm{A_3_6}+\mathrm{A_3_10}\mathrm{a31}-\mathrm{A_3_14}\mathrm{a41}+\mathrm{A_3_18}\mathrm{a51}-\mathrm{A_3_22}\mathrm{a61}& \mathrm{A_3_3}\mathrm{a11}+\left(-\mathrm{a21}+1\right)\mathrm{A_3_7}+\mathrm{A_3_11}\mathrm{a31}-\mathrm{A_3_15}\mathrm{a41}+\mathrm{A_3_19}\mathrm{a51}-\mathrm{A_3_23}\mathrm{a61}& \mathrm{A_3_4}\mathrm{a11}+\left(-\mathrm{a21}+1\right)\mathrm{A_3_8}+\mathrm{A_3_12}\mathrm{a31}-\mathrm{A_3_16}\mathrm{a41}+\mathrm{A_3_20}\mathrm{a51}-\mathrm{A_3_24}\mathrm{a61}\end{array}\right),\left(\begin{array}{cccc}-\mathrm{B_1_25}+\mathrm{B_5_25}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_13_25}}{\mathrm{a41}}& -\mathrm{B_1_26}+\mathrm{B_5_26}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_13_26}}{\mathrm{a41}}& -\mathrm{B_1_27}+\mathrm{B_5_27}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_13_27}}{\mathrm{a41}}& -\mathrm{B_1_28}+\mathrm{B_5_28}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_13_28}}{\mathrm{a41}}\\ -\mathrm{B_2_25}+\mathrm{B_6_25}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_14_25}}{\mathrm{a41}}& -\mathrm{B_2_26}+\mathrm{B_6_26}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_14_26}}{\mathrm{a41}}& -\mathrm{B_2_27}+\mathrm{B_6_27}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_14_27}}{\mathrm{a41}}& -\mathrm{B_2_28}+\mathrm{B_6_28}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_14_28}}{\mathrm{a41}}\\ -\mathrm{B_3_25}+\mathrm{B_7_25}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_15_25}}{\mathrm{a41}}& -\mathrm{B_3_26}+\mathrm{B_7_26}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_15_26}}{\mathrm{a41}}& -\mathrm{B_3_27}+\mathrm{B_7_27}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_15_27}}{\mathrm{a41}}& -\mathrm{B_3_28}+\mathrm{B_7_28}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_15_28}}{\mathrm{a41}}\\ -\mathrm{B_4_25}+\mathrm{B_8_25}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_16_25}}{\mathrm{a41}}& -\mathrm{B_4_26}+\mathrm{B_8_26}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_16_26}}{\mathrm{a41}}& -\mathrm{B_4_27}+\mathrm{B_8_27}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_16_27}}{\mathrm{a41}}& -\mathrm{B_4_28}+\mathrm{B_8_28}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_16_28}}{\mathrm{a41}}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_5_2}+\mathrm{C_25_2}& \mathrm{C_5_3}+\mathrm{C_25_3}\\ \mathrm{C_6_2}+\mathrm{C_26_2}& \mathrm{C_6_3}+\mathrm{C_26_3}\\ \mathrm{C_7_2}+\mathrm{C_27_2}& \mathrm{C_7_3}+\mathrm{C_27_3}\\ \mathrm{C_8_2}+\mathrm{C_28_2}& \mathrm{C_8_3}+\mathrm{C_28_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_2_1}\mathrm{a11}-\mathrm{A_2_13}\mathrm{a41}+\mathrm{A_2_17}\mathrm{a51}-\mathrm{A_2_21}\mathrm{a61}-\mathrm{A_2_5}\mathrm{a21}+\mathrm{A_2_9}\mathrm{a31}& \mathrm{A_2_10}\mathrm{a31}-\mathrm{A_2_14}\mathrm{a41}+\mathrm{A_2_18}\mathrm{a51}+\mathrm{A_2_2}\mathrm{a11}-\mathrm{A_2_22}\mathrm{a61}-\mathrm{A_2_6}\mathrm{a21}& \mathrm{A_2_11}\mathrm{a31}-\mathrm{A_2_15}\mathrm{a41}+\mathrm{A_2_19}\mathrm{a51}-\mathrm{A_2_23}\mathrm{a61}+\mathrm{A_2_3}\mathrm{a11}-\mathrm{A_2_7}\mathrm{a21}& \mathrm{A_2_12}\mathrm{a31}-\mathrm{A_2_16}\mathrm{a41}+\mathrm{A_2_20}\mathrm{a51}-\mathrm{A_2_24}\mathrm{a61}+\mathrm{A_2_4}\mathrm{a11}-\mathrm{A_2_8}\mathrm{a21}\\ \mathrm{A_3_1}\mathrm{a11}-\mathrm{A_3_13}\mathrm{a41}+\mathrm{A_3_17}\mathrm{a51}-\mathrm{A_3_21}\mathrm{a61}-\mathrm{A_3_5}\mathrm{a21}+\mathrm{A_3_9}\mathrm{a31}+\mathrm{A_1_5}& \mathrm{A_3_10}\mathrm{a31}-\mathrm{A_3_14}\mathrm{a41}+\mathrm{A_3_18}\mathrm{a51}+\mathrm{A_3_2}\mathrm{a11}-\mathrm{A_3_22}\mathrm{a61}-\mathrm{A_3_6}\mathrm{a21}+\mathrm{A_1_6}& \mathrm{A_3_11}\mathrm{a31}-\mathrm{A_3_15}\mathrm{a41}+\mathrm{A_3_19}\mathrm{a51}-\mathrm{A_3_23}\mathrm{a61}+\mathrm{A_3_3}\mathrm{a11}-\mathrm{A_3_7}\mathrm{a21}+\mathrm{A_1_7}& \mathrm{A_3_12}\mathrm{a31}-\mathrm{A_3_16}\mathrm{a41}+\mathrm{A_3_20}\mathrm{a51}-\mathrm{A_3_24}\mathrm{a61}+\mathrm{A_3_4}\mathrm{a11}-\mathrm{A_3_8}\mathrm{a21}+\mathrm{A_1_8}\end{array}\right),\left(\begin{array}{cccc}\frac{\mathrm{B_17_1}}{\mathrm{a51}}+\frac{\mathrm{B_21_5}}{\mathrm{a61}}-\mathrm{B_1_25}+\mathrm{B_5_25}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_13_25}}{\mathrm{a41}}& \frac{\mathrm{B_17_2}}{\mathrm{a51}}+\frac{\mathrm{B_21_6}}{\mathrm{a61}}-\mathrm{B_1_26}+\mathrm{B_5_26}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_13_26}}{\mathrm{a41}}& \frac{\mathrm{B_17_3}}{\mathrm{a51}}+\frac{\mathrm{B_21_7}}{\mathrm{a61}}-\mathrm{B_1_27}+\mathrm{B_5_27}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_13_27}}{\mathrm{a41}}& \frac{\mathrm{B_17_4}}{\mathrm{a51}}+\frac{\mathrm{B_21_8}}{\mathrm{a61}}-\mathrm{B_1_28}+\mathrm{B_5_28}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_13_28}}{\mathrm{a41}}\\ \frac{\mathrm{B_18_1}}{\mathrm{a51}}+\frac{\mathrm{B_22_5}}{\mathrm{a61}}-\mathrm{B_2_25}+\mathrm{B_6_25}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_14_25}}{\mathrm{a41}}& \frac{\mathrm{B_18_2}}{\mathrm{a51}}+\frac{\mathrm{B_22_6}}{\mathrm{a61}}-\mathrm{B_2_26}+\mathrm{B_6_26}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_14_26}}{\mathrm{a41}}& \frac{\mathrm{B_18_3}}{\mathrm{a51}}+\frac{\mathrm{B_22_7}}{\mathrm{a61}}-\mathrm{B_2_27}+\mathrm{B_6_27}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_14_27}}{\mathrm{a41}}& \frac{\mathrm{B_18_4}}{\mathrm{a51}}+\frac{\mathrm{B_22_8}}{\mathrm{a61}}-\mathrm{B_2_28}+\mathrm{B_6_28}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_14_28}}{\mathrm{a41}}\\ \frac{\mathrm{B_19_1}}{\mathrm{a51}}+\frac{\mathrm{B_23_5}}{\mathrm{a61}}-\mathrm{B_3_25}+\mathrm{B_7_25}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_15_25}}{\mathrm{a41}}& \frac{\mathrm{B_19_2}}{\mathrm{a51}}+\frac{\mathrm{B_23_6}}{\mathrm{a61}}-\mathrm{B_3_26}+\mathrm{B_7_26}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_15_26}}{\mathrm{a41}}& \frac{\mathrm{B_19_3}}{\mathrm{a51}}+\frac{\mathrm{B_23_7}}{\mathrm{a61}}-\mathrm{B_3_27}+\mathrm{B_7_27}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_15_27}}{\mathrm{a41}}& \frac{\mathrm{B_19_4}}{\mathrm{a51}}+\frac{\mathrm{B_23_8}}{\mathrm{a61}}-\mathrm{B_3_28}+\mathrm{B_7_28}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_15_28}}{\mathrm{a41}}\\ \frac{\mathrm{B_20_1}}{\mathrm{a51}}+\frac{\mathrm{B_24_5}}{\mathrm{a61}}-\mathrm{B_4_25}+\mathrm{B_8_25}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_16_25}}{\mathrm{a41}}& \frac{\mathrm{B_20_2}}{\mathrm{a51}}+\frac{\mathrm{B_24_6}}{\mathrm{a61}}-\mathrm{B_4_26}+\mathrm{B_8_26}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_16_26}}{\mathrm{a41}}& \frac{\mathrm{B_20_3}}{\mathrm{a51}}+\frac{\mathrm{B_24_7}}{\mathrm{a61}}-\mathrm{B_4_27}+\mathrm{B_8_27}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_16_27}}{\mathrm{a41}}& \frac{\mathrm{B_20_4}}{\mathrm{a51}}+\frac{\mathrm{B_24_8}}{\mathrm{a61}}-\mathrm{B_4_28}+\mathrm{B_8_28}-\frac{\left(\mathrm{a21}+\mathrm{a11}\right)\mathrm{B_16_28}}{\mathrm{a41}}\end{array}\right),\left(\begin{array}{cc}-\mathrm{C_5_2}& \mathrm{C_25_1}-\mathrm{C_5_3}\\ -\mathrm{C_6_2}& \mathrm{C_26_1}-\mathrm{C_6_3}\\ -\mathrm{C_7_2}& \mathrm{C_27_1}-\mathrm{C_7_3}\\ -\mathrm{C_8_2}& \mathrm{C_28_1}-\mathrm{C_8_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_2_1}\mathrm{a11}-\mathrm{A_2_13}\mathrm{a41}+\mathrm{A_2_17}\mathrm{a51}-\mathrm{A_2_21}\mathrm{a61}-\mathrm{A_2_5}\mathrm{a21}+\mathrm{A_2_9}\mathrm{a31}& \mathrm{A_2_10}\mathrm{a31}-\mathrm{A_2_14}\mathrm{a41}+\mathrm{A_2_18}\mathrm{a51}+\mathrm{A_2_2}\mathrm{a11}-\mathrm{A_2_22}\mathrm{a61}-\mathrm{A_2_6}\mathrm{a21}& \mathrm{A_2_11}\mathrm{a31}-\mathrm{A_2_15}\mathrm{a41}+\mathrm{A_2_19}\mathrm{a51}-\mathrm{A_2_23}\mathrm{a61}+\mathrm{A_2_3}\mathrm{a11}-\mathrm{A_2_7}\mathrm{a21}& \mathrm{A_2_12}\mathrm{a31}-\mathrm{A_2_16}\mathrm{a41}+\mathrm{A_2_20}\mathrm{a51}-\mathrm{A_2_24}\mathrm{a61}+\mathrm{A_2_4}\mathrm{a11}-\mathrm{A_2_8}\mathrm{a21}\\ \mathrm{A_3_1}\mathrm{a11}-\mathrm{A_3_13}\mathrm{a41}+\mathrm{A_3_17}\mathrm{a51}-\mathrm{A_3_21}\mathrm{a61}-\mathrm{A_3_5}\mathrm{a21}+\mathrm{A_3_9}\mathrm{a31}+\mathrm{A_1_17}& \mathrm{A_3_10}\mathrm{a31}-\mathrm{A_3_14}\mathrm{a41}+\mathrm{A_3_18}\mathrm{a51}+\mathrm{A_3_2}\mathrm{a11}-\mathrm{A_3_22}\mathrm{a61}-\mathrm{A_3_6}\mathrm{a21}+\mathrm{A_1_18}& \mathrm{A_3_11}\mathrm{a31}-\mathrm{A_3_15}\mathrm{a41}+\mathrm{A_3_19}\mathrm{a51}-\mathrm{A_3_23}\mathrm{a61}+\mathrm{A_3_3}\mathrm{a11}-\mathrm{A_3_7}\mathrm{a21}+\mathrm{A_1_19}& \mathrm{A_3_12}\mathrm{a31}-\mathrm{A_3_16}\mathrm{a41}+\mathrm{A_3_20}\mathrm{a51}-\mathrm{A_3_24}\mathrm{a61}+\mathrm{A_3_4}\mathrm{a11}-\mathrm{A_3_8}\mathrm{a21}+\mathrm{A_1_20}\end{array}\right),\left(\begin{array}{cccc}-\frac{\mathrm{B_1_17}}{\mathrm{a11}}+\frac{\mathrm{a51}\mathrm{B_13_25}}{\mathrm{a41}}+\mathrm{B_17_25}& -\frac{\mathrm{B_1_18}}{\mathrm{a11}}+\frac{\mathrm{a51}\mathrm{B_13_26}}{\mathrm{a41}}+\mathrm{B_17_26}& -\frac{\mathrm{B_1_19}}{\mathrm{a11}}+\frac{\mathrm{a51}\mathrm{B_13_27}}{\mathrm{a41}}+\mathrm{B_17_27}& -\frac{\mathrm{B_1_20}}{\mathrm{a11}}+\frac{\mathrm{a51}\mathrm{B_13_28}}{\mathrm{a41}}+\mathrm{B_17_28}\\ -\frac{\mathrm{B_2_17}}{\mathrm{a11}}+\frac{\mathrm{a51}\mathrm{B_14_25}}{\mathrm{a41}}+\mathrm{B_18_25}& -\frac{\mathrm{B_2_18}}{\mathrm{a11}}+\frac{\mathrm{a51}\mathrm{B_14_26}}{\mathrm{a41}}+\mathrm{B_18_26}& -\frac{\mathrm{B_2_19}}{\mathrm{a11}}+\frac{\mathrm{a51}\mathrm{B_14_27}}{\mathrm{a41}}+\mathrm{B_18_27}& -\frac{\mathrm{B_2_20}}{\mathrm{a11}}+\frac{\mathrm{a51}\mathrm{B_14_28}}{\mathrm{a41}}+\mathrm{B_18_28}\\ -\frac{\mathrm{B_3_17}}{\mathrm{a11}}+\frac{\mathrm{a51}\mathrm{B_15_25}}{\mathrm{a41}}+\mathrm{B_19_25}& -\frac{\mathrm{B_3_18}}{\mathrm{a11}}+\frac{\mathrm{a51}\mathrm{B_15_26}}{\mathrm{a41}}+\mathrm{B_19_26}& -\frac{\mathrm{B_3_19}}{\mathrm{a11}}+\frac{\mathrm{a51}\mathrm{B_15_27}}{\mathrm{a41}}+\mathrm{B_19_27}& -\frac{\mathrm{B_3_20}}{\mathrm{a11}}+\frac{\mathrm{a51}\mathrm{B_15_28}}{\mathrm{a41}}+\mathrm{B_19_28}\\ -\frac{\mathrm{B_4_17}}{\mathrm{a11}}+\frac{\mathrm{a51}\mathrm{B_16_25}}{\mathrm{a41}}+\mathrm{B_20_25}& -\frac{\mathrm{B_4_18}}{\mathrm{a11}}+\frac{\mathrm{a51}\mathrm{B_16_26}}{\mathrm{a41}}+\mathrm{B_20_26}& -\frac{\mathrm{B_4_19}}{\mathrm{a11}}+\frac{\mathrm{a51}\mathrm{B_16_27}}{\mathrm{a41}}+\mathrm{B_20_27}& -\frac{\mathrm{B_4_20}}{\mathrm{a11}}+\frac{\mathrm{a51}\mathrm{B_16_28}}{\mathrm{a41}}+\mathrm{B_20_28}\end{array}\right),\left(\begin{array}{cc}-\mathrm{C_17_2}& \mathrm{C_25_1}-\mathrm{C_17_3}\\ -\mathrm{C_18_2}& \mathrm{C_26_1}-\mathrm{C_18_3}\\ -\mathrm{C_19_2}& \mathrm{C_27_1}-\mathrm{C_19_3}\\ -\mathrm{C_20_2}& \mathrm{C_28_1}-\mathrm{C_20_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_1_1}\mathrm{a11}-\mathrm{A_1_13}\mathrm{a41}+\mathrm{A_1_17}\mathrm{a51}-\mathrm{A_1_21}\mathrm{a61}-\mathrm{A_1_5}\mathrm{a21}+\mathrm{A_1_9}\mathrm{a31}-\mathrm{A_3_1}\mathrm{a11}+\mathrm{A_3_13}\mathrm{a41}-\mathrm{A_3_17}\mathrm{a51}+\mathrm{A_3_21}\mathrm{a61}+\mathrm{A_3_5}\mathrm{a21}-\mathrm{A_3_9}\mathrm{a31}& \mathrm{A_1_10}\mathrm{a31}-\mathrm{A_1_14}\mathrm{a41}+\mathrm{A_1_18}\mathrm{a51}+\mathrm{A_1_2}\mathrm{a11}-\mathrm{A_1_22}\mathrm{a61}-\mathrm{A_1_6}\mathrm{a21}-\mathrm{A_3_10}\mathrm{a31}+\mathrm{A_3_14}\mathrm{a41}-\mathrm{A_3_18}\mathrm{a51}-\mathrm{A_3_2}\mathrm{a11}+\mathrm{A_3_22}\mathrm{a61}+\mathrm{A_3_6}\mathrm{a21}& \mathrm{A_1_11}\mathrm{a31}-\mathrm{A_1_15}\mathrm{a41}+\mathrm{A_1_19}\mathrm{a51}-\mathrm{A_1_23}\mathrm{a61}+\mathrm{A_1_3}\mathrm{a11}-\mathrm{A_1_7}\mathrm{a21}-\mathrm{A_3_11}\mathrm{a31}+\mathrm{A_3_15}\mathrm{a41}-\mathrm{A_3_19}\mathrm{a51}+\mathrm{A_3_23}\mathrm{a61}-\mathrm{A_3_3}\mathrm{a11}+\mathrm{A_3_7}\mathrm{a21}& \mathrm{A_1_12}\mathrm{a31}-\mathrm{A_1_16}\mathrm{a41}+\mathrm{A_1_20}\mathrm{a51}-\mathrm{A_1_24}\mathrm{a61}+\mathrm{A_1_4}\mathrm{a11}-\mathrm{A_1_8}\mathrm{a21}-\mathrm{A_3_12}\mathrm{a31}+\mathrm{A_3_16}\mathrm{a41}-\mathrm{A_3_20}\mathrm{a51}+\mathrm{A_3_24}\mathrm{a61}-\mathrm{A_3_4}\mathrm{a11}+\mathrm{A_3_8}\mathrm{a21}\end{array}\right),\left(\begin{array}{cccc}\frac{\mathrm{B_17_1}}{\mathrm{a51}}+\frac{\mathrm{B_21_5}}{\mathrm{a61}}-\frac{\mathrm{B_1_17}}{\mathrm{a11}}+\mathrm{B_1_25}+\frac{\left(\mathrm{a61}+\mathrm{a11}-1\right)\mathrm{B_13_25}}{\mathrm{a41}}-\mathrm{B_21_25}& \frac{\mathrm{B_17_2}}{\mathrm{a51}}+\frac{\mathrm{B_21_6}}{\mathrm{a61}}-\frac{\mathrm{B_1_18}}{\mathrm{a11}}+\mathrm{B_1_26}+\frac{\left(\mathrm{a61}+\mathrm{a11}-1\right)\mathrm{B_13_26}}{\mathrm{a41}}-\mathrm{B_21_26}& \frac{\mathrm{B_17_3}}{\mathrm{a51}}+\frac{\mathrm{B_21_7}}{\mathrm{a61}}-\frac{\mathrm{B_1_19}}{\mathrm{a11}}+\mathrm{B_1_27}+\frac{\left(\mathrm{a61}+\mathrm{a11}-1\right)\mathrm{B_13_27}}{\mathrm{a41}}-\mathrm{B_21_27}& \frac{\mathrm{B_17_4}}{\mathrm{a51}}+\frac{\mathrm{B_21_8}}{\mathrm{a61}}-\frac{\mathrm{B_1_20}}{\mathrm{a11}}+\mathrm{B_1_28}+\frac{\left(\mathrm{a61}+\mathrm{a11}-1\right)\mathrm{B_13_28}}{\mathrm{a41}}-\mathrm{B_21_28}\\ \frac{\mathrm{B_18_1}}{\mathrm{a51}}+\frac{\mathrm{B_22_5}}{\mathrm{a61}}-\frac{\mathrm{B_2_17}}{\mathrm{a11}}+\mathrm{B_2_25}+\frac{\left(\mathrm{a61}+\mathrm{a11}-1\right)\mathrm{B_14_25}}{\mathrm{a41}}-\mathrm{B_22_25}& \frac{\mathrm{B_18_2}}{\mathrm{a51}}+\frac{\mathrm{B_22_6}}{\mathrm{a61}}-\frac{\mathrm{B_2_18}}{\mathrm{a11}}+\mathrm{B_2_26}+\frac{\left(\mathrm{a61}+\mathrm{a11}-1\right)\mathrm{B_14_26}}{\mathrm{a41}}-\mathrm{B_22_26}& \frac{\mathrm{B_18_3}}{\mathrm{a51}}+\frac{\mathrm{B_22_7}}{\mathrm{a61}}-\frac{\mathrm{B_2_19}}{\mathrm{a11}}+\mathrm{B_2_27}+\frac{\left(\mathrm{a61}+\mathrm{a11}-1\right)\mathrm{B_14_27}}{\mathrm{a41}}-\mathrm{B_22_27}& \frac{\mathrm{B_18_4}}{\mathrm{a51}}+\frac{\mathrm{B_22_8}}{\mathrm{a61}}-\frac{\mathrm{B_2_20}}{\mathrm{a11}}+\mathrm{B_2_28}+\frac{\left(\mathrm{a61}+\mathrm{a11}-1\right)\mathrm{B_14_28}}{\mathrm{a41}}-\mathrm{B_22_28}\\ \frac{\mathrm{B_19_1}}{\mathrm{a51}}+\frac{\mathrm{B_23_5}}{\mathrm{a61}}-\frac{\mathrm{B_3_17}}{\mathrm{a11}}+\mathrm{B_3_25}+\frac{\left(\mathrm{a61}+\mathrm{a11}-1\right)\mathrm{B_15_25}}{\mathrm{a41}}-\mathrm{B_23_25}& \frac{\mathrm{B_19_2}}{\mathrm{a51}}+\frac{\mathrm{B_23_6}}{\mathrm{a61}}-\frac{\mathrm{B_3_18}}{\mathrm{a11}}+\mathrm{B_3_26}+\frac{\left(\mathrm{a61}+\mathrm{a11}-1\right)\mathrm{B_15_26}}{\mathrm{a41}}-\mathrm{B_23_26}& \frac{\mathrm{B_19_3}}{\mathrm{a51}}+\frac{\mathrm{B_23_7}}{\mathrm{a61}}-\frac{\mathrm{B_3_19}}{\mathrm{a11}}+\mathrm{B_3_27}+\frac{\left(\mathrm{a61}+\mathrm{a11}-1\right)\mathrm{B_15_27}}{\mathrm{a41}}-\mathrm{B_23_27}& \frac{\mathrm{B_19_4}}{\mathrm{a51}}+\frac{\mathrm{B_23_8}}{\mathrm{a61}}-\frac{\mathrm{B_3_20}}{\mathrm{a11}}+\mathrm{B_3_28}+\frac{\left(\mathrm{a61}+\mathrm{a11}-1\right)\mathrm{B_15_28}}{\mathrm{a41}}-\mathrm{B_23_28}\\ \frac{\mathrm{B_20_1}}{\mathrm{a51}}+\frac{\mathrm{B_24_5}}{\mathrm{a61}}-\frac{\mathrm{B_4_17}}{\mathrm{a11}}+\mathrm{B_4_25}+\frac{\left(\mathrm{a61}+\mathrm{a11}-1\right)\mathrm{B_16_25}}{\mathrm{a41}}-\mathrm{B_24_25}& \frac{\mathrm{B_20_2}}{\mathrm{a51}}+\frac{\mathrm{B_24_6}}{\mathrm{a61}}-\frac{\mathrm{B_4_18}}{\mathrm{a11}}+\mathrm{B_4_26}+\frac{\left(\mathrm{a61}+\mathrm{a11}-1\right)\mathrm{B_16_26}}{\mathrm{a41}}-\mathrm{B_24_26}& \frac{\mathrm{B_20_3}}{\mathrm{a51}}+\frac{\mathrm{B_24_7}}{\mathrm{a61}}-\frac{\mathrm{B_4_19}}{\mathrm{a11}}+\mathrm{B_4_27}+\frac{\left(\mathrm{a61}+\mathrm{a11}-1\right)\mathrm{B_16_27}}{\mathrm{a41}}-\mathrm{B_24_27}& \frac{\mathrm{B_20_4}}{\mathrm{a51}}+\frac{\mathrm{B_24_8}}{\mathrm{a61}}-\frac{\mathrm{B_4_20}}{\mathrm{a11}}+\mathrm{B_4_28}+\frac{\left(\mathrm{a61}+\mathrm{a11}-1\right)\mathrm{B_16_28}}{\mathrm{a41}}-\mathrm{B_24_28}\end{array}\right),\left(\begin{array}{c}\mathrm{C_25_1}\\ \mathrm{C_26_1}\\ \mathrm{C_27_1}\\ \mathrm{C_28_1}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}-\mathrm{A_2_1}\mathrm{a11}+\mathrm{A_2_13}\mathrm{a41}-\mathrm{A_2_17}\mathrm{a51}+\mathrm{A_2_21}\mathrm{a61}+\mathrm{A_2_5}\mathrm{a21}-\mathrm{A_2_9}\mathrm{a31}& -\mathrm{A_2_10}\mathrm{a31}+\mathrm{A_2_14}\mathrm{a41}-\mathrm{A_2_18}\mathrm{a51}-\mathrm{A_2_2}\mathrm{a11}+\mathrm{A_2_22}\mathrm{a61}+\mathrm{A_2_6}\mathrm{a21}& -\mathrm{A_2_11}\mathrm{a31}+\mathrm{A_2_15}\mathrm{a41}-\mathrm{A_2_19}\mathrm{a51}+\mathrm{A_2_23}\mathrm{a61}-\mathrm{A_2_3}\mathrm{a11}+\mathrm{A_2_7}\mathrm{a21}& -\mathrm{A_2_12}\mathrm{a31}+\mathrm{A_2_16}\mathrm{a41}-\mathrm{A_2_20}\mathrm{a51}+\mathrm{A_2_24}\mathrm{a61}-\mathrm{A_2_4}\mathrm{a11}+\mathrm{A_2_8}\mathrm{a21}\\ \mathrm{A_1_1}\mathrm{a11}-\mathrm{A_1_13}\mathrm{a41}+\mathrm{A_1_17}\mathrm{a51}-\mathrm{A_1_5}\mathrm{a21}+\mathrm{A_1_9}\mathrm{a31}-\mathrm{A_3_1}\mathrm{a11}+\mathrm{A_3_13}\mathrm{a41}-\mathrm{A_3_17}\mathrm{a51}+\mathrm{A_3_5}\mathrm{a21}-\mathrm{A_3_9}\mathrm{a31}+\left(-\mathrm{a61}+1\right)\mathrm{A_1_21}+\mathrm{A_3_21}\mathrm{a61}& \mathrm{A_1_10}\mathrm{a31}-\mathrm{A_1_14}\mathrm{a41}+\mathrm{A_1_18}\mathrm{a51}+\mathrm{A_1_2}\mathrm{a11}-\mathrm{A_1_6}\mathrm{a21}-\mathrm{A_3_10}\mathrm{a31}+\mathrm{A_3_14}\mathrm{a41}-\mathrm{A_3_18}\mathrm{a51}-\mathrm{A_3_2}\mathrm{a11}+\mathrm{A_3_6}\mathrm{a21}+\left(-\mathrm{a61}+1\right)\mathrm{A_1_22}+\mathrm{A_3_22}\mathrm{a61}& \mathrm{A_1_11}\mathrm{a31}-\mathrm{A_1_15}\mathrm{a41}+\mathrm{A_1_19}\mathrm{a51}+\mathrm{A_1_3}\mathrm{a11}-\mathrm{A_1_7}\mathrm{a21}-\mathrm{A_3_11}\mathrm{a31}+\mathrm{A_3_15}\mathrm{a41}-\mathrm{A_3_19}\mathrm{a51}-\mathrm{A_3_3}\mathrm{a11}+\mathrm{A_3_7}\mathrm{a21}+\left(-\mathrm{a61}+1\right)\mathrm{A_1_23}+\mathrm{A_3_23}\mathrm{a61}& \mathrm{A_1_12}\mathrm{a31}-\mathrm{A_1_16}\mathrm{a41}+\mathrm{A_1_20}\mathrm{a51}+\mathrm{A_1_4}\mathrm{a11}-\mathrm{A_1_8}\mathrm{a21}-\mathrm{A_3_12}\mathrm{a31}+\mathrm{A_3_16}\mathrm{a41}-\mathrm{A_3_20}\mathrm{a51}-\mathrm{A_3_4}\mathrm{a11}+\mathrm{A_3_8}\mathrm{a21}+\left(-\mathrm{a61}+1\right)\mathrm{A_1_24}+\mathrm{A_3_24}\mathrm{a61}\end{array}\right),\left(\begin{array}{cccc}\frac{\mathrm{B_5_21}}{\mathrm{a21}}-\frac{\mathrm{a61}\mathrm{B_13_25}}{\mathrm{a41}}+\mathrm{B_21_25}& \frac{\mathrm{B_5_22}}{\mathrm{a21}}-\frac{\mathrm{a61}\mathrm{B_13_26}}{\mathrm{a41}}+\mathrm{B_21_26}& \frac{\mathrm{B_5_23}}{\mathrm{a21}}-\frac{\mathrm{a61}\mathrm{B_13_27}}{\mathrm{a41}}+\mathrm{B_21_27}& \frac{\mathrm{B_5_24}}{\mathrm{a21}}-\frac{\mathrm{a61}\mathrm{B_13_28}}{\mathrm{a41}}+\mathrm{B_21_28}\\ \frac{\mathrm{B_6_21}}{\mathrm{a21}}-\frac{\mathrm{a61}\mathrm{B_14_25}}{\mathrm{a41}}+\mathrm{B_22_25}& \frac{\mathrm{B_6_22}}{\mathrm{a21}}-\frac{\mathrm{a61}\mathrm{B_14_26}}{\mathrm{a41}}+\mathrm{B_22_26}& \frac{\mathrm{B_6_23}}{\mathrm{a21}}-\frac{\mathrm{a61}\mathrm{B_14_27}}{\mathrm{a41}}+\mathrm{B_22_27}& \frac{\mathrm{B_6_24}}{\mathrm{a21}}-\frac{\mathrm{a61}\mathrm{B_14_28}}{\mathrm{a41}}+\mathrm{B_22_28}\\ \frac{\mathrm{B_7_21}}{\mathrm{a21}}-\frac{\mathrm{a61}\mathrm{B_15_25}}{\mathrm{a41}}+\mathrm{B_23_25}& \frac{\mathrm{B_7_22}}{\mathrm{a21}}-\frac{\mathrm{a61}\mathrm{B_15_26}}{\mathrm{a41}}+\mathrm{B_23_26}& \frac{\mathrm{B_7_23}}{\mathrm{a21}}-\frac{\mathrm{a61}\mathrm{B_15_27}}{\mathrm{a41}}+\mathrm{B_23_27}& \frac{\mathrm{B_7_24}}{\mathrm{a21}}-\frac{\mathrm{a61}\mathrm{B_15_28}}{\mathrm{a41}}+\mathrm{B_23_28}\\ \frac{\mathrm{B_8_21}}{\mathrm{a21}}-\frac{\mathrm{a61}\mathrm{B_16_25}}{\mathrm{a41}}+\mathrm{B_24_25}& \frac{\mathrm{B_8_22}}{\mathrm{a21}}-\frac{\mathrm{a61}\mathrm{B_16_26}}{\mathrm{a41}}+\mathrm{B_24_26}& \frac{\mathrm{B_8_23}}{\mathrm{a21}}-\frac{\mathrm{a61}\mathrm{B_16_27}}{\mathrm{a41}}+\mathrm{B_24_27}& \frac{\mathrm{B_8_24}}{\mathrm{a21}}-\frac{\mathrm{a61}\mathrm{B_16_28}}{\mathrm{a41}}+\mathrm{B_24_28}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_21_2}+\mathrm{C_25_2}& \mathrm{C_25_1}+\mathrm{C_21_3}+\mathrm{C_25_3}\\ \mathrm{C_22_2}+\mathrm{C_26_2}& \mathrm{C_26_1}+\mathrm{C_22_3}+\mathrm{C_26_3}\\ \mathrm{C_23_2}+\mathrm{C_27_2}& \mathrm{C_27_1}+\mathrm{C_23_3}+\mathrm{C_27_3}\\ \mathrm{C_24_2}+\mathrm{C_28_2}& \mathrm{C_28_1}+\mathrm{C_24_3}+\mathrm{C_28_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_2_1}\mathrm{a11}-\mathrm{A_2_13}\mathrm{a41}+\mathrm{A_2_17}\mathrm{a51}-\mathrm{A_2_21}\mathrm{a61}-\mathrm{A_2_5}\mathrm{a21}+\mathrm{A_2_9}\mathrm{a31}& \mathrm{A_2_10}\mathrm{a31}-\mathrm{A_2_14}\mathrm{a41}+\mathrm{A_2_18}\mathrm{a51}+\mathrm{A_2_2}\mathrm{a11}-\mathrm{A_2_22}\mathrm{a61}-\mathrm{A_2_6}\mathrm{a21}& \mathrm{A_2_11}\mathrm{a31}-\mathrm{A_2_15}\mathrm{a41}+\mathrm{A_2_19}\mathrm{a51}-\mathrm{A_2_23}\mathrm{a61}+\mathrm{A_2_3}\mathrm{a11}-\mathrm{A_2_7}\mathrm{a21}& \mathrm{A_2_12}\mathrm{a31}-\mathrm{A_2_16}\mathrm{a41}+\mathrm{A_2_20}\mathrm{a51}-\mathrm{A_2_24}\mathrm{a61}+\mathrm{A_2_4}\mathrm{a11}-\mathrm{A_2_8}\mathrm{a21}\\ \left(-\mathrm{a11}+1\right)\mathrm{A_1_1}+\mathrm{A_3_1}\mathrm{a11}+\left(\mathrm{a21}+1\right)\mathrm{A_1_5}-\mathrm{A_3_5}\mathrm{a21}-\mathrm{A_1_9}\mathrm{a31}+\mathrm{A_3_9}\mathrm{a31}+\mathrm{A_1_13}\mathrm{a41}-\mathrm{A_3_13}\mathrm{a41}-\mathrm{A_1_17}\mathrm{a51}+\mathrm{A_3_17}\mathrm{a51}+\mathrm{A_1_21}\mathrm{a61}-\mathrm{A_3_21}\mathrm{a61}& \left(-\mathrm{a11}+1\right)\mathrm{A_1_2}+\mathrm{A_3_2}\mathrm{a11}+\left(\mathrm{a21}+1\right)\mathrm{A_1_6}-\mathrm{A_3_6}\mathrm{a21}-\mathrm{A_1_10}\mathrm{a31}+\mathrm{A_3_10}\mathrm{a31}+\mathrm{A_1_14}\mathrm{a41}-\mathrm{A_3_14}\mathrm{a41}-\mathrm{A_1_18}\mathrm{a51}+\mathrm{A_3_18}\mathrm{a51}+\mathrm{A_1_22}\mathrm{a61}-\mathrm{A_3_22}\mathrm{a61}& \left(-\mathrm{a11}+1\right)\mathrm{A_1_3}+\mathrm{A_3_3}\mathrm{a11}+\left(\mathrm{a21}+1\right)\mathrm{A_1_7}-\mathrm{A_3_7}\mathrm{a21}-\mathrm{A_1_11}\mathrm{a31}+\mathrm{A_3_11}\mathrm{a31}+\mathrm{A_1_15}\mathrm{a41}-\mathrm{A_3_15}\mathrm{a41}-\mathrm{A_1_19}\mathrm{a51}+\mathrm{A_3_19}\mathrm{a51}+\mathrm{A_1_23}\mathrm{a61}-\mathrm{A_3_23}\mathrm{a61}& \left(-\mathrm{a11}+1\right)\mathrm{A_1_4}+\mathrm{A_3_4}\mathrm{a11}+\left(\mathrm{a21}+1\right)\mathrm{A_1_8}-\mathrm{A_3_8}\mathrm{a21}-\mathrm{A_1_12}\mathrm{a31}+\mathrm{A_3_12}\mathrm{a31}+\mathrm{A_1_16}\mathrm{a41}-\mathrm{A_3_16}\mathrm{a41}-\mathrm{A_1_20}\mathrm{a51}+\mathrm{A_3_20}\mathrm{a51}+\mathrm{A_1_24}\mathrm{a61}-\mathrm{A_3_24}\mathrm{a61}\end{array}\right),\left(\begin{array}{cccc}-\frac{\mathrm{B_17_1}}{\mathrm{a51}}+\mathrm{B_1_25}+\frac{\mathrm{a11}\mathrm{B_13_25}}{\mathrm{a41}}& -\frac{\mathrm{B_17_2}}{\mathrm{a51}}+\mathrm{B_1_26}+\frac{\mathrm{a11}\mathrm{B_13_26}}{\mathrm{a41}}& -\frac{\mathrm{B_17_3}}{\mathrm{a51}}+\mathrm{B_1_27}+\frac{\mathrm{a11}\mathrm{B_13_27}}{\mathrm{a41}}& -\frac{\mathrm{B_17_4}}{\mathrm{a51}}+\mathrm{B_1_28}+\frac{\mathrm{a11}\mathrm{B_13_28}}{\mathrm{a41}}\\ -\frac{\mathrm{B_18_1}}{\mathrm{a51}}+\mathrm{B_2_25}+\frac{\mathrm{a11}\mathrm{B_14_25}}{\mathrm{a41}}& -\frac{\mathrm{B_18_2}}{\mathrm{a51}}+\mathrm{B_2_26}+\frac{\mathrm{a11}\mathrm{B_14_26}}{\mathrm{a41}}& -\frac{\mathrm{B_18_3}}{\mathrm{a51}}+\mathrm{B_2_27}+\frac{\mathrm{a11}\mathrm{B_14_27}}{\mathrm{a41}}& -\frac{\mathrm{B_18_4}}{\mathrm{a51}}+\mathrm{B_2_28}+\frac{\mathrm{a11}\mathrm{B_14_28}}{\mathrm{a41}}\\ -\frac{\mathrm{B_19_1}}{\mathrm{a51}}+\mathrm{B_3_25}+\frac{\mathrm{a11}\mathrm{B_15_25}}{\mathrm{a41}}& -\frac{\mathrm{B_19_2}}{\mathrm{a51}}+\mathrm{B_3_26}+\frac{\mathrm{a11}\mathrm{B_15_26}}{\mathrm{a41}}& -\frac{\mathrm{B_19_3}}{\mathrm{a51}}+\mathrm{B_3_27}+\frac{\mathrm{a11}\mathrm{B_15_27}}{\mathrm{a41}}& -\frac{\mathrm{B_19_4}}{\mathrm{a51}}+\mathrm{B_3_28}+\frac{\mathrm{a11}\mathrm{B_15_28}}{\mathrm{a41}}\\ -\frac{\mathrm{B_20_1}}{\mathrm{a51}}+\mathrm{B_4_25}+\frac{\mathrm{a11}\mathrm{B_16_25}}{\mathrm{a41}}& -\frac{\mathrm{B_20_2}}{\mathrm{a51}}+\mathrm{B_4_26}+\frac{\mathrm{a11}\mathrm{B_16_26}}{\mathrm{a41}}& -\frac{\mathrm{B_20_3}}{\mathrm{a51}}+\mathrm{B_4_27}+\frac{\mathrm{a11}\mathrm{B_16_27}}{\mathrm{a41}}& -\frac{\mathrm{B_20_4}}{\mathrm{a51}}+\mathrm{B_4_28}+\frac{\mathrm{a11}\mathrm{B_16_28}}{\mathrm{a41}}\end{array}\right),\left(\begin{array}{cc}-\mathrm{C_1_2}-\mathrm{C_5_2}+\mathrm{C_25_2}& \mathrm{C_25_1}-\mathrm{C_1_3}-\mathrm{C_5_3}+\mathrm{C_25_3}\\ -\mathrm{C_2_2}-\mathrm{C_6_2}+\mathrm{C_26_2}& \mathrm{C_26_1}-\mathrm{C_2_3}-\mathrm{C_6_3}+\mathrm{C_26_3}\\ -\mathrm{C_3_2}-\mathrm{C_7_2}+\mathrm{C_27_2}& \mathrm{C_27_1}-\mathrm{C_3_3}-\mathrm{C_7_3}+\mathrm{C_27_3}\\ -\mathrm{C_4_2}-\mathrm{C_8_2}+\mathrm{C_28_2}& \mathrm{C_28_1}-\mathrm{C_4_3}-\mathrm{C_8_3}+\mathrm{C_28_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\left(\mathrm{a11}-1\right)\mathrm{A_2_1}+\left(-\mathrm{a21}-1\right)\mathrm{A_2_5}+\mathrm{A_2_9}\mathrm{a31}-\mathrm{A_2_13}\mathrm{a41}+\mathrm{A_2_17}\mathrm{a51}-\mathrm{A_2_21}\mathrm{a61}& \left(\mathrm{a11}-1\right)\mathrm{A_2_2}+\left(-\mathrm{a21}-1\right)\mathrm{A_2_6}+\mathrm{A_2_10}\mathrm{a31}-\mathrm{A_2_14}\mathrm{a41}+\mathrm{A_2_18}\mathrm{a51}-\mathrm{A_2_22}\mathrm{a61}& \left(\mathrm{a11}-1\right)\mathrm{A_2_3}+\left(-\mathrm{a21}-1\right)\mathrm{A_2_7}+\mathrm{A_2_11}\mathrm{a31}-\mathrm{A_2_15}\mathrm{a41}+\mathrm{A_2_19}\mathrm{a51}-\mathrm{A_2_23}\mathrm{a61}& \left(\mathrm{a11}-1\right)\mathrm{A_2_4}+\left(-\mathrm{a21}-1\right)\mathrm{A_2_8}+\mathrm{A_2_12}\mathrm{a31}-\mathrm{A_2_16}\mathrm{a41}+\mathrm{A_2_20}\mathrm{a51}-\mathrm{A_2_24}\mathrm{a61}\\ \left(-\mathrm{a11}+1\right)\mathrm{A_1_1}+\left(\mathrm{a11}-1\right)\mathrm{A_3_1}+\left(\mathrm{a21}+1\right)\mathrm{A_1_5}+\left(-\mathrm{a21}-1\right)\mathrm{A_3_5}-\mathrm{A_1_9}\mathrm{a31}+\mathrm{A_3_9}\mathrm{a31}+\mathrm{A_1_13}\mathrm{a41}-\mathrm{A_3_13}\mathrm{a41}-\mathrm{A_1_17}\mathrm{a51}+\mathrm{A_3_17}\mathrm{a51}+\mathrm{A_1_21}\mathrm{a61}-\mathrm{A_3_21}\mathrm{a61}& \left(-\mathrm{a11}+1\right)\mathrm{A_1_2}+\left(\mathrm{a11}-1\right)\mathrm{A_3_2}+\left(\mathrm{a21}+1\right)\mathrm{A_1_6}+\left(-\mathrm{a21}-1\right)\mathrm{A_3_6}-\mathrm{A_1_10}\mathrm{a31}+\mathrm{A_3_10}\mathrm{a31}+\mathrm{A_1_14}\mathrm{a41}-\mathrm{A_3_14}\mathrm{a41}-\mathrm{A_1_18}\mathrm{a51}+\mathrm{A_3_18}\mathrm{a51}+\mathrm{A_1_22}\mathrm{a61}-\mathrm{A_3_22}\mathrm{a61}& \left(-\mathrm{a11}+1\right)\mathrm{A_1_3}+\left(\mathrm{a11}-1\right)\mathrm{A_3_3}+\left(\mathrm{a21}+1\right)\mathrm{A_1_7}+\left(-\mathrm{a21}-1\right)\mathrm{A_3_7}-\mathrm{A_1_11}\mathrm{a31}+\mathrm{A_3_11}\mathrm{a31}+\mathrm{A_1_15}\mathrm{a41}-\mathrm{A_3_15}\mathrm{a41}-\mathrm{A_1_19}\mathrm{a51}+\mathrm{A_3_19}\mathrm{a51}+\mathrm{A_1_23}\mathrm{a61}-\mathrm{A_3_23}\mathrm{a61}& \left(-\mathrm{a11}+1\right)\mathrm{A_1_4}+\left(\mathrm{a11}-1\right)\mathrm{A_3_4}+\left(\mathrm{a21}+1\right)\mathrm{A_1_8}+\left(-\mathrm{a21}-1\right)\mathrm{A_3_8}-\mathrm{A_1_12}\mathrm{a31}+\mathrm{A_3_12}\mathrm{a31}+\mathrm{A_1_16}\mathrm{a41}-\mathrm{A_3_16}\mathrm{a41}-\mathrm{A_1_20}\mathrm{a51}+\mathrm{A_3_20}\mathrm{a51}+\mathrm{A_1_24}\mathrm{a61}-\mathrm{A_3_24}\mathrm{a61}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_1_25}+\frac{\mathrm{a11}\mathrm{B_13_25}}{\mathrm{a41}}& \mathrm{B_1_26}+\frac{\mathrm{a11}\mathrm{B_13_26}}{\mathrm{a41}}& \mathrm{B_1_27}+\frac{\mathrm{a11}\mathrm{B_13_27}}{\mathrm{a41}}& \mathrm{B_1_28}+\frac{\mathrm{a11}\mathrm{B_13_28}}{\mathrm{a41}}\\ \mathrm{B_2_25}+\frac{\mathrm{a11}\mathrm{B_14_25}}{\mathrm{a41}}& \mathrm{B_2_26}+\frac{\mathrm{a11}\mathrm{B_14_26}}{\mathrm{a41}}& \mathrm{B_2_27}+\frac{\mathrm{a11}\mathrm{B_14_27}}{\mathrm{a41}}& \mathrm{B_2_28}+\frac{\mathrm{a11}\mathrm{B_14_28}}{\mathrm{a41}}\\ \mathrm{B_3_25}+\frac{\mathrm{a11}\mathrm{B_15_25}}{\mathrm{a41}}& \mathrm{B_3_26}+\frac{\mathrm{a11}\mathrm{B_15_26}}{\mathrm{a41}}& \mathrm{B_3_27}+\frac{\mathrm{a11}\mathrm{B_15_27}}{\mathrm{a41}}& \mathrm{B_3_28}+\frac{\mathrm{a11}\mathrm{B_15_28}}{\mathrm{a41}}\\ \mathrm{B_4_25}+\frac{\mathrm{a11}\mathrm{B_16_25}}{\mathrm{a41}}& \mathrm{B_4_26}+\frac{\mathrm{a11}\mathrm{B_16_26}}{\mathrm{a41}}& \mathrm{B_4_27}+\frac{\mathrm{a11}\mathrm{B_16_27}}{\mathrm{a41}}& \mathrm{B_4_28}+\frac{\mathrm{a11}\mathrm{B_16_28}}{\mathrm{a41}}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_1_2}+\mathrm{C_5_2}-\mathrm{C_25_2}& \mathrm{C_1_3}+\mathrm{C_5_3}-\mathrm{C_25_3}\\ \mathrm{C_2_2}+\mathrm{C_6_2}-\mathrm{C_26_2}& \mathrm{C_2_3}+\mathrm{C_6_3}-\mathrm{C_26_3}\\ \mathrm{C_3_2}+\mathrm{C_7_2}-\mathrm{C_27_2}& \mathrm{C_3_3}+\mathrm{C_7_3}-\mathrm{C_27_3}\\ \mathrm{C_4_2}+\mathrm{C_8_2}-\mathrm{C_28_2}& \mathrm{C_4_3}+\mathrm{C_8_3}-\mathrm{C_28_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}-\mathrm{A_1_1}-\mathrm{A_1_5}+\mathrm{A_1_13}& -\mathrm{A_1_2}-\mathrm{A_1_6}+\mathrm{A_1_14}& -\mathrm{A_1_3}-\mathrm{A_1_7}+\mathrm{A_1_15}& -\mathrm{A_1_4}-\mathrm{A_1_8}+\mathrm{A_1_16}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_13_1}+\frac{\mathrm{a41}\mathrm{B_17_1}}{\mathrm{a51}}& \mathrm{B_13_2}+\frac{\mathrm{a41}\mathrm{B_17_2}}{\mathrm{a51}}& \mathrm{B_13_3}+\frac{\mathrm{a41}\mathrm{B_17_3}}{\mathrm{a51}}& \mathrm{B_13_4}+\frac{\mathrm{a41}\mathrm{B_17_4}}{\mathrm{a51}}\\ \mathrm{B_14_1}+\frac{\mathrm{a41}\mathrm{B_18_1}}{\mathrm{a51}}& \mathrm{B_14_2}+\frac{\mathrm{a41}\mathrm{B_18_2}}{\mathrm{a51}}& \mathrm{B_14_3}+\frac{\mathrm{a41}\mathrm{B_18_3}}{\mathrm{a51}}& \mathrm{B_14_4}+\frac{\mathrm{a41}\mathrm{B_18_4}}{\mathrm{a51}}\\ \mathrm{B_15_1}+\frac{\mathrm{a41}\mathrm{B_19_1}}{\mathrm{a51}}& \mathrm{B_15_2}+\frac{\mathrm{a41}\mathrm{B_19_2}}{\mathrm{a51}}& \mathrm{B_15_3}+\frac{\mathrm{a41}\mathrm{B_19_3}}{\mathrm{a51}}& \mathrm{B_15_4}+\frac{\mathrm{a41}\mathrm{B_19_4}}{\mathrm{a51}}\\ \mathrm{B_16_1}+\frac{\mathrm{a41}\mathrm{B_20_1}}{\mathrm{a51}}& \mathrm{B_16_2}+\frac{\mathrm{a41}\mathrm{B_20_2}}{\mathrm{a51}}& \mathrm{B_16_3}+\frac{\mathrm{a41}\mathrm{B_20_3}}{\mathrm{a51}}& \mathrm{B_16_4}+\frac{\mathrm{a41}\mathrm{B_20_4}}{\mathrm{a51}}\end{array}\right),\left(\begin{array}{c}\mathrm{C_1_1}+\mathrm{C_5_1}-\mathrm{C_13_1}+\mathrm{C_1_3}+\mathrm{C_5_3}-\mathrm{C_13_3}\\ \mathrm{C_2_1}+\mathrm{C_6_1}-\mathrm{C_14_1}+\mathrm{C_2_3}+\mathrm{C_6_3}-\mathrm{C_14_3}\\ \mathrm{C_3_1}+\mathrm{C_7_1}-\mathrm{C_15_1}+\mathrm{C_3_3}+\mathrm{C_7_3}-\mathrm{C_15_3}\\ \mathrm{C_4_1}+\mathrm{C_8_1}-\mathrm{C_16_1}+\mathrm{C_4_3}+\mathrm{C_8_3}-\mathrm{C_16_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}-\mathrm{A_2_5}-\mathrm{A_2_9}+\mathrm{A_2_17}& -\mathrm{A_2_6}-\mathrm{A_2_10}+\mathrm{A_2_18}& -\mathrm{A_2_7}-\mathrm{A_2_11}+\mathrm{A_2_19}& -\mathrm{A_2_8}-\mathrm{A_2_12}+\mathrm{A_2_20}\\ -\mathrm{A_3_5}-\mathrm{A_3_9}+\mathrm{A_3_17}& -\mathrm{A_3_6}-\mathrm{A_3_10}+\mathrm{A_3_18}& -\mathrm{A_3_7}-\mathrm{A_3_11}+\mathrm{A_3_19}& -\mathrm{A_3_8}-\mathrm{A_3_12}+\mathrm{A_3_20}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_17_5}+\frac{\mathrm{a51}\mathrm{B_21_5}}{\mathrm{a61}}& \mathrm{B_17_6}+\frac{\mathrm{a51}\mathrm{B_21_6}}{\mathrm{a61}}& \mathrm{B_17_7}+\frac{\mathrm{a51}\mathrm{B_21_7}}{\mathrm{a61}}& \mathrm{B_17_8}+\frac{\mathrm{a51}\mathrm{B_21_8}}{\mathrm{a61}}\\ \mathrm{B_18_5}+\frac{\mathrm{a51}\mathrm{B_22_5}}{\mathrm{a61}}& \mathrm{B_18_6}+\frac{\mathrm{a51}\mathrm{B_22_6}}{\mathrm{a61}}& \mathrm{B_18_7}+\frac{\mathrm{a51}\mathrm{B_22_7}}{\mathrm{a61}}& \mathrm{B_18_8}+\frac{\mathrm{a51}\mathrm{B_22_8}}{\mathrm{a61}}\\ \mathrm{B_19_5}+\frac{\mathrm{a51}\mathrm{B_23_5}}{\mathrm{a61}}& \mathrm{B_19_6}+\frac{\mathrm{a51}\mathrm{B_23_6}}{\mathrm{a61}}& \mathrm{B_19_7}+\frac{\mathrm{a51}\mathrm{B_23_7}}{\mathrm{a61}}& \mathrm{B_19_8}+\frac{\mathrm{a51}\mathrm{B_23_8}}{\mathrm{a61}}\\ \mathrm{B_20_5}+\frac{\mathrm{a51}\mathrm{B_24_5}}{\mathrm{a61}}& \mathrm{B_20_6}+\frac{\mathrm{a51}\mathrm{B_24_6}}{\mathrm{a61}}& \mathrm{B_20_7}+\frac{\mathrm{a51}\mathrm{B_24_7}}{\mathrm{a61}}& \mathrm{B_20_8}+\frac{\mathrm{a51}\mathrm{B_24_8}}{\mathrm{a61}}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_5_2}+\mathrm{C_9_2}-\mathrm{C_17_2}& \mathrm{C_5_3}+\mathrm{C_9_3}-\mathrm{C_17_3}\\ \mathrm{C_6_2}+\mathrm{C_10_2}-\mathrm{C_18_2}& \mathrm{C_6_3}+\mathrm{C_10_3}-\mathrm{C_18_3}\\ \mathrm{C_7_2}+\mathrm{C_11_2}-\mathrm{C_19_2}& \mathrm{C_7_3}+\mathrm{C_11_3}-\mathrm{C_19_3}\\ \mathrm{C_8_2}+\mathrm{C_12_2}-\mathrm{C_20_2}& \mathrm{C_8_3}+\mathrm{C_12_3}-\mathrm{C_20_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}-\mathrm{A_1_5}-\mathrm{A_1_9}+\mathrm{A_1_17}& -\mathrm{A_1_6}-\mathrm{A_1_10}+\mathrm{A_1_18}& -\mathrm{A_1_7}-\mathrm{A_1_11}+\mathrm{A_1_19}& -\mathrm{A_1_8}-\mathrm{A_1_12}+\mathrm{A_1_20}\end{array}\right),\left(\begin{array}{cccc}\frac{\mathrm{a21}\mathrm{B_1_17}}{\mathrm{a11}}+\mathrm{B_5_17}& \frac{\mathrm{a21}\mathrm{B_1_18}}{\mathrm{a11}}+\mathrm{B_5_18}& \frac{\mathrm{a21}\mathrm{B_1_19}}{\mathrm{a11}}+\mathrm{B_5_19}& \frac{\mathrm{a21}\mathrm{B_1_20}}{\mathrm{a11}}+\mathrm{B_5_20}\\ \frac{\mathrm{a21}\mathrm{B_2_17}}{\mathrm{a11}}+\mathrm{B_6_17}& \frac{\mathrm{a21}\mathrm{B_2_18}}{\mathrm{a11}}+\mathrm{B_6_18}& \frac{\mathrm{a21}\mathrm{B_2_19}}{\mathrm{a11}}+\mathrm{B_6_19}& \frac{\mathrm{a21}\mathrm{B_2_20}}{\mathrm{a11}}+\mathrm{B_6_20}\\ \frac{\mathrm{a21}\mathrm{B_3_17}}{\mathrm{a11}}+\mathrm{B_7_17}& \frac{\mathrm{a21}\mathrm{B_3_18}}{\mathrm{a11}}+\mathrm{B_7_18}& \frac{\mathrm{a21}\mathrm{B_3_19}}{\mathrm{a11}}+\mathrm{B_7_19}& \frac{\mathrm{a21}\mathrm{B_3_20}}{\mathrm{a11}}+\mathrm{B_7_20}\\ \frac{\mathrm{a21}\mathrm{B_4_17}}{\mathrm{a11}}+\mathrm{B_8_17}& \frac{\mathrm{a21}\mathrm{B_4_18}}{\mathrm{a11}}+\mathrm{B_8_18}& \frac{\mathrm{a21}\mathrm{B_4_19}}{\mathrm{a11}}+\mathrm{B_8_19}& \frac{\mathrm{a21}\mathrm{B_4_20}}{\mathrm{a11}}+\mathrm{B_8_20}\end{array}\right),\left(\begin{array}{c}\mathrm{C_5_1}+\mathrm{C_9_1}-\mathrm{C_17_1}\\ \mathrm{C_6_1}+\mathrm{C_10_1}-\mathrm{C_18_1}\\ \mathrm{C_11_1}+\mathrm{C_7_1}-\mathrm{C_19_1}\\ \mathrm{C_8_1}+\mathrm{C_12_1}-\mathrm{C_20_1}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}-\mathrm{A_2_9}-\mathrm{A_2_13}+\mathrm{A_2_21}& -\mathrm{A_2_10}-\mathrm{A_2_14}+\mathrm{A_2_22}& -\mathrm{A_2_11}-\mathrm{A_2_15}+\mathrm{A_2_23}& -\mathrm{A_2_12}-\mathrm{A_2_16}+\mathrm{A_2_24}\\ -\mathrm{A_3_9}-\mathrm{A_3_13}+\mathrm{A_3_21}& -\mathrm{A_3_10}-\mathrm{A_3_14}+\mathrm{A_3_22}& -\mathrm{A_3_11}-\mathrm{A_3_15}+\mathrm{A_3_23}& -\mathrm{A_3_12}-\mathrm{A_3_16}+\mathrm{A_3_24}\end{array}\right),\left(\begin{array}{cccc}\frac{\mathrm{a31}\mathrm{B_5_21}}{\mathrm{a21}}+\mathrm{B_9_21}& \frac{\mathrm{a31}\mathrm{B_5_22}}{\mathrm{a21}}+\mathrm{B_9_22}& \frac{\mathrm{a31}\mathrm{B_5_23}}{\mathrm{a21}}+\mathrm{B_9_23}& \frac{\mathrm{a31}\mathrm{B_5_24}}{\mathrm{a21}}+\mathrm{B_9_24}\\ \frac{\mathrm{a31}\mathrm{B_6_21}}{\mathrm{a21}}+\mathrm{B_10_21}& \frac{\mathrm{a31}\mathrm{B_6_22}}{\mathrm{a21}}+\mathrm{B_10_22}& \frac{\mathrm{a31}\mathrm{B_6_23}}{\mathrm{a21}}+\mathrm{B_10_23}& \frac{\mathrm{a31}\mathrm{B_6_24}}{\mathrm{a21}}+\mathrm{B_10_24}\\ \frac{\mathrm{a31}\mathrm{B_7_21}}{\mathrm{a21}}+\mathrm{B_11_21}& \frac{\mathrm{a31}\mathrm{B_7_22}}{\mathrm{a21}}+\mathrm{B_11_22}& \frac{\mathrm{a31}\mathrm{B_7_23}}{\mathrm{a21}}+\mathrm{B_11_23}& \frac{\mathrm{a31}\mathrm{B_7_24}}{\mathrm{a21}}+\mathrm{B_11_24}\\ \frac{\mathrm{a31}\mathrm{B_8_21}}{\mathrm{a21}}+\mathrm{B_12_21}& \frac{\mathrm{a31}\mathrm{B_8_22}}{\mathrm{a21}}+\mathrm{B_12_22}& \frac{\mathrm{a31}\mathrm{B_8_23}}{\mathrm{a21}}+\mathrm{B_12_23}& \frac{\mathrm{a31}\mathrm{B_8_24}}{\mathrm{a21}}+\mathrm{B_12_24}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_9_2}+\mathrm{C_13_2}-\mathrm{C_21_2}& \mathrm{C_9_1}+\mathrm{C_13_1}-\mathrm{C_21_1}+\mathrm{C_9_3}+\mathrm{C_13_3}-\mathrm{C_21_3}\\ \mathrm{C_10_2}+\mathrm{C_14_2}-\mathrm{C_22_2}& \mathrm{C_10_1}+\mathrm{C_14_1}-\mathrm{C_22_1}+\mathrm{C_10_3}+\mathrm{C_14_3}-\mathrm{C_22_3}\\ \mathrm{C_11_2}+\mathrm{C_15_2}-\mathrm{C_23_2}& \mathrm{C_11_1}+\mathrm{C_15_1}-\mathrm{C_23_1}+\mathrm{C_11_3}+\mathrm{C_15_3}-\mathrm{C_23_3}\\ \mathrm{C_12_2}+\mathrm{C_16_2}-\mathrm{C_24_2}& \mathrm{C_12_1}+\mathrm{C_16_1}-\mathrm{C_24_1}+\mathrm{C_12_3}+\mathrm{C_16_3}-\mathrm{C_24_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_2_1}+\mathrm{A_2_9}& \mathrm{A_2_2}+\mathrm{A_2_10}& \mathrm{A_2_3}+\mathrm{A_2_11}& \mathrm{A_2_4}+\mathrm{A_2_12}\\ -\mathrm{A_1_1}+\mathrm{A_3_1}-\mathrm{A_1_9}+\mathrm{A_3_9}& -\mathrm{A_1_2}+\mathrm{A_3_2}-\mathrm{A_1_10}+\mathrm{A_3_10}& -\mathrm{A_1_3}+\mathrm{A_3_3}-\mathrm{A_1_11}+\mathrm{A_3_11}& -\mathrm{A_1_4}+\mathrm{A_3_4}-\mathrm{A_1_12}+\mathrm{A_3_12}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_9_1}-\frac{\mathrm{a31}\mathrm{B_17_1}}{\mathrm{a51}}& \mathrm{B_9_2}-\frac{\mathrm{a31}\mathrm{B_17_2}}{\mathrm{a51}}& \mathrm{B_9_3}-\frac{\mathrm{a31}\mathrm{B_17_3}}{\mathrm{a51}}& \mathrm{B_9_4}-\frac{\mathrm{a31}\mathrm{B_17_4}}{\mathrm{a51}}\\ \mathrm{B_10_1}-\frac{\mathrm{a31}\mathrm{B_18_1}}{\mathrm{a51}}& \mathrm{B_10_2}-\frac{\mathrm{a31}\mathrm{B_18_2}}{\mathrm{a51}}& \mathrm{B_10_3}-\frac{\mathrm{a31}\mathrm{B_18_3}}{\mathrm{a51}}& \mathrm{B_10_4}-\frac{\mathrm{a31}\mathrm{B_18_4}}{\mathrm{a51}}\\ \mathrm{B_11_1}-\frac{\mathrm{a31}\mathrm{B_19_1}}{\mathrm{a51}}& \mathrm{B_11_2}-\frac{\mathrm{a31}\mathrm{B_19_2}}{\mathrm{a51}}& \mathrm{B_11_3}-\frac{\mathrm{a31}\mathrm{B_19_3}}{\mathrm{a51}}& \mathrm{B_11_4}-\frac{\mathrm{a31}\mathrm{B_19_4}}{\mathrm{a51}}\\ \mathrm{B_12_1}-\frac{\mathrm{a31}\mathrm{B_20_1}}{\mathrm{a51}}& \mathrm{B_12_2}-\frac{\mathrm{a31}\mathrm{B_20_2}}{\mathrm{a51}}& \mathrm{B_12_3}-\frac{\mathrm{a31}\mathrm{B_20_3}}{\mathrm{a51}}& \mathrm{B_12_4}-\frac{\mathrm{a31}\mathrm{B_20_4}}{\mathrm{a51}}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_1_2}+\mathrm{C_9_2}& \mathrm{C_1_3}+\mathrm{C_9_3}\\ \mathrm{C_2_2}+\mathrm{C_10_2}& \mathrm{C_2_3}+\mathrm{C_10_3}\\ \mathrm{C_3_2}+\mathrm{C_11_2}& \mathrm{C_3_3}+\mathrm{C_11_3}\\ \mathrm{C_4_2}+\mathrm{C_12_2}& \mathrm{C_4_3}+\mathrm{C_12_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_2_1}+\mathrm{A_2_21}& \mathrm{A_2_2}+\mathrm{A_2_22}& \mathrm{A_2_3}+\mathrm{A_2_23}& \mathrm{A_2_4}+\mathrm{A_2_24}\\ -\mathrm{A_1_1}+\mathrm{A_3_1}-\mathrm{A_1_21}+\mathrm{A_3_21}& -\mathrm{A_1_2}+\mathrm{A_3_2}-\mathrm{A_1_22}+\mathrm{A_3_22}& -\mathrm{A_1_3}+\mathrm{A_3_3}-\mathrm{A_1_23}+\mathrm{A_3_23}& -\mathrm{A_1_4}+\mathrm{A_3_4}-\mathrm{A_1_24}+\mathrm{A_3_24}\end{array}\right),\left(\begin{array}{cccc}\frac{\mathrm{a61}\mathrm{B_17_1}}{\mathrm{a51}}+\mathrm{B_21_1}& \frac{\mathrm{a61}\mathrm{B_17_2}}{\mathrm{a51}}+\mathrm{B_21_2}& \frac{\mathrm{a61}\mathrm{B_17_3}}{\mathrm{a51}}+\mathrm{B_21_3}& \frac{\mathrm{a61}\mathrm{B_17_4}}{\mathrm{a51}}+\mathrm{B_21_4}\\ \frac{\mathrm{a61}\mathrm{B_18_1}}{\mathrm{a51}}+\mathrm{B_22_1}& \frac{\mathrm{a61}\mathrm{B_18_2}}{\mathrm{a51}}+\mathrm{B_22_2}& \frac{\mathrm{a61}\mathrm{B_18_3}}{\mathrm{a51}}+\mathrm{B_22_3}& \frac{\mathrm{a61}\mathrm{B_18_4}}{\mathrm{a51}}+\mathrm{B_22_4}\\ \frac{\mathrm{a61}\mathrm{B_19_1}}{\mathrm{a51}}+\mathrm{B_23_1}& \frac{\mathrm{a61}\mathrm{B_19_2}}{\mathrm{a51}}+\mathrm{B_23_2}& \frac{\mathrm{a61}\mathrm{B_19_3}}{\mathrm{a51}}+\mathrm{B_23_3}& \frac{\mathrm{a61}\mathrm{B_19_4}}{\mathrm{a51}}+\mathrm{B_23_4}\\ \frac{\mathrm{a61}\mathrm{B_20_1}}{\mathrm{a51}}+\mathrm{B_24_1}& \frac{\mathrm{a61}\mathrm{B_20_2}}{\mathrm{a51}}+\mathrm{B_24_2}& \frac{\mathrm{a61}\mathrm{B_20_3}}{\mathrm{a51}}+\mathrm{B_24_3}& \frac{\mathrm{a61}\mathrm{B_20_4}}{\mathrm{a51}}+\mathrm{B_24_4}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_1_2}+\mathrm{C_21_2}& \mathrm{C_1_3}+\mathrm{C_21_3}\\ \mathrm{C_2_2}+\mathrm{C_22_2}& \mathrm{C_2_3}+\mathrm{C_22_3}\\ \mathrm{C_3_2}+\mathrm{C_23_2}& \mathrm{C_3_3}+\mathrm{C_23_3}\\ \mathrm{C_4_2}+\mathrm{C_24_2}& \mathrm{C_4_3}+\mathrm{C_24_3}\end{array}\right)\right)\right)+\mathrm{Trace}\left(\mathrm{Mul}\left(\left(\begin{array}{cccc}\mathrm{A_2_9}+\mathrm{A_2_13}& \mathrm{A_2_10}+\mathrm{A_2_14}& \mathrm{A_2_11}+\mathrm{A_2_15}& \mathrm{A_2_12}+\mathrm{A_2_16}\\ -\mathrm{A_1_9}+\mathrm{A_3_9}-\mathrm{A_1_13}+\mathrm{A_3_13}& -\mathrm{A_1_10}+\mathrm{A_3_10}-\mathrm{A_1_14}+\mathrm{A_3_14}& -\mathrm{A_1_11}+\mathrm{A_3_11}-\mathrm{A_1_15}+\mathrm{A_3_15}& -\mathrm{A_1_12}+\mathrm{A_3_12}-\mathrm{A_1_16}+\mathrm{A_3_16}\end{array}\right),\left(\begin{array}{cccc}\mathrm{B_21_9}+\mathrm{B_9_13}& \mathrm{B_21_10}+\mathrm{B_9_14}& \mathrm{B_21_11}+\mathrm{B_9_15}& \mathrm{B_21_12}+\mathrm{B_9_16}\\ \mathrm{B_22_9}+\mathrm{B_10_13}& \mathrm{B_22_10}+\mathrm{B_10_14}& \mathrm{B_22_11}+\mathrm{B_10_15}& \mathrm{B_22_12}+\mathrm{B_10_16}\\ \mathrm{B_23_9}+\mathrm{B_11_13}& \mathrm{B_23_10}+\mathrm{B_11_14}& \mathrm{B_23_11}+\mathrm{B_11_15}& \mathrm{B_23_12}+\mathrm{B_11_16}\\ \mathrm{B_24_9}+\mathrm{B_12_13}& \mathrm{B_24_10}+\mathrm{B_12_14}& \mathrm{B_24_11}+\mathrm{B_12_15}& \mathrm{B_24_12}+\mathrm{B_12_16}\end{array}\right),\left(\begin{array}{cc}\mathrm{C_9_2}+\mathrm{C_13_2}& \mathrm{C_9_3}+\mathrm{C_13_3}\\ \mathrm{C_10_2}+\mathrm{C_14_2}& \mathrm{C_10_3}+\mathrm{C_14_3}\\ \mathrm{C_11_2}+\mathrm{C_15_2}& \mathrm{C_11_3}+\mathrm{C_15_3}\\ \mathrm{C_12_2}+\mathrm{C_16_2}& \mathrm{C_12_3}+\mathrm{C_16_3}\end{array}\right)\right)\right)$