Description of fast matrix multiplication algorithm: ⟨3×17×32:1216⟩

Algorithm type

256X3Y3Z2+384X3Y3Z+4X3YZ3+12X2Y3Z2+180X2Y2Z2+4XY2Z3+4X3YZ+20XY3Z+28XY2Z2+40XYZ3+76X2YZ+136XY2Z+56XYZ2+16XYZ256X3Y3Z2384X3Y3Z4X3YZ312X2Y3Z2180X2Y2Z24XY2Z34X3YZ20XY3Z28XY2Z240XYZ376X2YZ136XY2Z56XYZ216XYZ256*X^3*Y^3*Z^2+384*X^3*Y^3*Z+4*X^3*Y*Z^3+12*X^2*Y^3*Z^2+180*X^2*Y^2*Z^2+4*X*Y^2*Z^3+4*X^3*Y*Z+20*X*Y^3*Z+28*X*Y^2*Z^2+40*X*Y*Z^3+76*X^2*Y*Z+136*X*Y^2*Z+56*X*Y*Z^2+16*X*Y*Z

Algorithm definition

The algorithm ⟨3×17×32:1216⟩ is the (Kronecker) tensor product of ⟨3×17×16:608⟩ with ⟨1×1×2:2⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table