Description of fast matrix multiplication algorithm: ⟨3×11×30:738⟩

Algorithm type

160X3Y3Z2+240X3Y3Z+2X3YZ3+10X2Y3Z2+102X2Y2Z2+4XY4Z+2XY2Z3+6X3YZ+18XY3Z+26XY2Z2+34XYZ3+6X2YZ+60XY2Z+52XYZ2+16XYZ160X3Y3Z2240X3Y3Z2X3YZ310X2Y3Z2102X2Y2Z24XY4Z2XY2Z36X3YZ18XY3Z26XY2Z234XYZ36X2YZ60XY2Z52XYZ216XYZ160*X^3*Y^3*Z^2+240*X^3*Y^3*Z+2*X^3*Y*Z^3+10*X^2*Y^3*Z^2+102*X^2*Y^2*Z^2+4*X*Y^4*Z+2*X*Y^2*Z^3+6*X^3*Y*Z+18*X*Y^3*Z+26*X*Y^2*Z^2+34*X*Y*Z^3+6*X^2*Y*Z+60*X*Y^2*Z+52*X*Y*Z^2+16*X*Y*Z

Algorithm definition

The algorithm ⟨3×11×30:738⟩ is the (Kronecker) tensor product of ⟨3×11×15:369⟩ with ⟨1×1×2:2⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table