Description of fast matrix multiplication algorithm: ⟨3×11×22:552⟩

Algorithm type

32X2Y6Z3+32X2Y5Z3+48XY6Z3+48XY5Z3+64X2Y3Z3+96XY3Z3+4X3Y2Z+68X2Y2Z2+8XY4Z+4XY2Z3+20X3YZ+8X2Y2Z+4XY3Z+8XY2Z2+20XYZ3+4X2YZ+52XY2Z+4XYZ2+28XYZ32X2Y6Z332X2Y5Z348XY6Z348XY5Z364X2Y3Z396XY3Z34X3Y2Z68X2Y2Z28XY4Z4XY2Z320X3YZ8X2Y2Z4XY3Z8XY2Z220XYZ34X2YZ52XY2Z4XYZ228XYZ32*X^2*Y^6*Z^3+32*X^2*Y^5*Z^3+48*X*Y^6*Z^3+48*X*Y^5*Z^3+64*X^2*Y^3*Z^3+96*X*Y^3*Z^3+4*X^3*Y^2*Z+68*X^2*Y^2*Z^2+8*X*Y^4*Z+4*X*Y^2*Z^3+20*X^3*Y*Z+8*X^2*Y^2*Z+4*X*Y^3*Z+8*X*Y^2*Z^2+20*X*Y*Z^3+4*X^2*Y*Z+52*X*Y^2*Z+4*X*Y*Z^2+28*X*Y*Z

Algorithm definition

The algorithm ⟨3×11×22:552⟩ is the (Kronecker) tensor product of ⟨1×1×2:2⟩ with ⟨3×11×11:276⟩.

Algorithm description

These encodings are given in compressed text format using the maple computer algebra system. In each cases, the last line could be understood as a description of the encoding with respect to classical matrix multiplication algorithm. As these outputs are structured, one can construct easily a parser to its favorite format using the maple documentation without this software.


Back to main table